ASEN3112.Lect09.Slides

9
 ASEN 3112 - Structures Torsion Of Closed Thin Wall (CTW) Sections 9 ASEN 3112 Lecture 9 – Slide 1

Transcript of ASEN3112.Lect09.Slides

Page 1: ASEN3112.Lect09.Slides

7/30/2019 ASEN3112.Lect09.Slides

http://slidepdf.com/reader/full/asen3112lect09slides 1/9

 ASEN 3112 - Structures

Torsion Of 

Closed Thin Wall(CTW) Sections

9

ASEN 3112 Lecture 9 – Slide 1

Page 2: ASEN3112.Lect09.Slides

7/30/2019 ASEN3112.Lect09.Slides

http://slidepdf.com/reader/full/asen3112lect09slides 2/9

Recall the Classification of Thin Wall (TW)

Cross Sections Under Torque

 ASEN 3112 - Structures

Closed Thin Wall (CTW) Sections

at least one cell shear flow circuit can be established

  Single Cell: just one cell

  Multicell: more than one cell

Open Thin Wall (OTW) Sectionsno cell shear flow circuit can be established

Hybrid Thin Wall (HTW) Sections

contains both OTW and CTW components

ASEN 3112 Lecture 9 – Slide 2

Page 3: ASEN3112.Lect09.Slides

7/30/2019 ASEN3112.Lect09.Slides

http://slidepdf.com/reader/full/asen3112lect09slides 3/9

Sample CTW Cross Sections

 ASEN 3112 - Structures

tube boxaircraftfuselage

space shuttlefuselage

car frame (unibodyconstruction) wing torque box

ASEN 3112 Lecture 9 – Slide 3

Page 4: ASEN3112.Lect09.Slides

7/30/2019 ASEN3112.Lect09.Slides

http://slidepdf.com/reader/full/asen3112lect09slides 4/9

Single-Cell CTW Section

 ASEN 3112 - Structures

(b)(a)

 z

 yt = t(s)

s

(c)

Enclosed

area= T 

Shear flow

2A E   A E 

h

O

q ds

ds

ASEN 3112 Lecture 9 – Slide 4

Page 5: ASEN3112.Lect09.Slides

7/30/2019 ASEN3112.Lect09.Slides

http://slidepdf.com/reader/full/asen3112lect09slides 5/9

Shear Stress Formula

 ASEN 3112 - Structures

T  = dT  = q. h ds = q h ds = q 2 dA E  = q. 2 A E  = 2 q A E 

q =T 

2 A E 

τ =q

t =

2t A E 

τmax =q

t mi n

=T 

2t mi n A E 

Equilibrium of internal torque T with the assumed shear stress distribution

(constant across wall thickness, directed along tangent to midline) gives

in which A is the enclosed area defined by the wall midline (which

should be confused with the cross section area or material area)

Solving for q gives the shear flow and wall stress formula

Since q is constant along the contour, plainly the maximum shear stress

occurs where the wall thickness t  is minimum:

 E 

ASEN 3112 Lecture 9 – Slide 5

Page 6: ASEN3112.Lect09.Slides

7/30/2019 ASEN3112.Lect09.Slides

http://slidepdf.com/reader/full/asen3112lect09slides 6/9

Twist Angle Formula

 ASEN 3112 - Structures

It can be shown that the twist-angle rate is given by

Here G is the shear modulus. Derivation of this formula requires the

use of energy methods in mechanics, which is a graduate-level topic.

If the wall thickness t is constant along the cell contour, the foregoing

formula simplifies to

=

dx=

q p

2 A E  t =

G J in which

in which

 J =4 A2

 E  t 

 p

φ'

φ'

d φ

d φ

=

dx=

q

2G A E 

ds

t =

4G A2 E 

ds

t =

G J  J =

4 A2 E 

dst 

where p = ds is the midline perimeter length, or simply the perimeter.

ASEN 3112 Lecture 9 – Slide 6

Page 7: ASEN3112.Lect09.Slides

7/30/2019 ASEN3112.Lect09.Slides

http://slidepdf.com/reader/full/asen3112lect09slides 7/9

Multicell CTW Sections

Are Not Treated in This Course

 ASEN 3112 - Structures

(b)(a)t 

1

2

3

q1

q2

q3

C  C  B D  D

(c)q

1

q3

q1

q2

_

q3q2_

q2

q2T 

 A A

 B

 z

 y

Cell flows Wall flows

ASEN 3112 Lecture 9 – Slide 7

Page 8: ASEN3112.Lect09.Slides

7/30/2019 ASEN3112.Lect09.Slides

http://slidepdf.com/reader/full/asen3112lect09slides 8/9

Worked Out Example Cross Sections

 ASEN 3112 - Structures

d/2

T  T 

Same d and t as in (a)

thin cut

(a) (c)(b)

d/2

CTW section:rectangular tube

Hybrid section:CTW + OTW (2)

OTW section:slitted rectangular tube

All d 's are midline dimensions

ASEN 3112 Lecture 9 – Slide 8

Page 9: ASEN3112.Lect09.Slides

7/30/2019 ASEN3112.Lect09.Slides

http://slidepdf.com/reader/full/asen3112lect09slides 9/9

Torqued Hybrid TW (HTW) "A" Section

For Recitation

 ASEN 3112 - Structures

b1

t /21

t 1 t 1

b1

b2b3

60 60

60b1

t 2 t 3

A

B C

D E

A

B

B

C

C

D E

1

2 3

decompositionCTW

OTW OTW

(b)(a)

b1 = 200 mm, b2 = b3 = 400 mm, t 1 = t 2 = t 3 = 6 mm

G = 80 GPa (steel), T = 604 103 mm-N,  L = 2514 mm

ASEN 3112 Lecture 9 – Slide 9