April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount...

23
Sonya Parashar Biology 438 301 Professor Rome April 14 th , 2011

Transcript of April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount...

Page 1: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa

Sonya  Parashar  Biology  438  301  Professor  Rome  April  14th,  2011    

Page 2: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa

Why  starts  and  glides?     GoSwim    1.  Less  swimming  during  laps  2.  Lower  stroke  count  3.  Improvements  in  your  swimming  breakouts  4.  Specifically  for  starts,  overtake  swimmers  during  a  race  that  have  poor  push  offs1.  

Page 3: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa

Purpose  of  the  Study     Examine  several  properties  of  two  different  starts  

  Velocity      Acceleration      Force    

 Examine  drag  during  gliding  stage  

Page 4: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa

Equipment      Sheerr  Pool  in  Pottruck  Gym     High  Speed  Camera     Bathing  suit   Goggles   Cap     Permanent  marker    

Page 5: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa

Video  of  the  glide  

Page 6: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa

Graph  of  the  glide  

Page 7: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa
Page 8: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa

Graph  of  the  glide  

Page 9: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa
Page 10: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa

Graph  of  the  glide  

Page 11: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa
Page 12: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa

Graph  of  the  glide  

Page 13: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa
Page 14: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa

Calcula=ons      1  pound  =  0.45  kilograms  

  Therefore,  I  weigh  approximately  54  kilograms     Maximum  force  =  (mass)  (max.  acceleration)    Force  =  (54)  (2.675)  =  144  N  

  Max.  acceleration  occurred  at  35.16  seconds  

 Drag:  FD  =  (1/2)ρv2CDA   Where  ρ  =  mass  density  of  liquid,  v  =  velocity,  CD  =  drag  coefficient2,  A  =  reference  area  

  ρ  =  ~1.0  kg/m3,  v=  velocity  at  different  points,  CD  =  ~0.8,    A  =  .0646  (.393((.164))  

Page 15: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa

Calcula=ons  (cont.)   Drag  at  maximum  velocity  (26.6)  =  18.28  N     Drag  at  second  highest  velocity  (21.6)  =  12.05  N     Drag  at  third  highest  velocity  (17.8)  =  8.19  N   Drag  at  fourth  highest  velocity  (17.2)  =  7.6  N  

Page 16: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa

Techniques  of  Grab-­‐start     Backstroke  start    

Page 17: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa

Video  of  the  grab-­‐start  

Page 18: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa

Graph  of  the  Start    

Page 19: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa
Page 20: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa

Calcula=ons      1  pound  =  0.45  kilograms  

  Therefore,  I  weigh  approximately  54  kilograms     Maximum  force  =  (mass)  (max.  acceleration)    Force  =  (54)  (3.65)  =  197.1  N  

  Max.  acceleration  occurred  at  seconds  62.62  secs  

 Drag:  FD  =  (1/2)ρv2CDA   Where  ρ  =  mass  density  of  liquid,  v  =  velocity,  CD  =  drag  coefficient,  A  =  reference  area  

  ρ  =  ~1.0  kg/m3,  v=  velocity,  CD  =  ~0.8,    A  =  .0646   Drag  at  33.6  m/s  =  29.2  N  

Page 21: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa

Conclusions     Higher  velocities  tend  to  occur  when  most  of  the  body  is  submerged      Velocity  decreases  as  more  of  the  body  becomes  exposed  to  the  surface  and  less  of  it  is  covered  with  water    

  The  overall  drag  is  reduced   Maximum  acceleration  and  maximum  velocity  do  not  occur  at  the  same  time    

 Direct  correlation  of  drag  and  velocity  

Page 22: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa

Further  Study     Better,  more  aquatically  suited  equipment    

 Underwater  high  speed  camera   Outdoor  pool     Underwater  force  plates  

 More  detailed  analysis  of  drag    Passive  drag   Different  swimmers  

Page 23: April14 ,2011 · Why$starts$and$glides?$$ GoSwim& 1.Lessswimmingduringlaps& 2.Lowerstrokecount 3.Improvementsinyourswimmingbreakouts& 4.Specificallyforstarts,overtakeswimmersduringa

References    1-­‐  http://www.goswim.tv/entries/5996/all-­‐strokes-­‐-­‐-­‐simple-­‐streamline.html  

  2-­‐  Zatsiorsky,  Vladimir  M.  Kinetics  of  Human  Motion.  Champaign,  IL:  Human  Kinetics,  2002.  Print.  

  3-­‐  Chatard,  Jean-­‐Claude.  Biomechanics  and  Medicine  in  Swimming  IX:  Proceedings  of  the  IXth  World  Symposium  on  Biomechanics  and  Medicine  in  Swimming,  University  of  Saint-­‐Etienne,  France.  Saint-­‐Etienne,  France:  University  of  Saint-­‐Etienne,  2003.  Print.