ANSYS Simulation Advances for RF Microwave Antenna Applications

31
© 2011 ANSYS, Inc. October 24, 2011 1 Simulation Advances for RF, Microwave and Antenna Applications Presented by Martin Vogel, PhD Application Engineer

description

Advanced Integrated Solvers Technologies including Finite Arrays with Domain Decomposition; Hybrid Solving with Finite Element‐Boundary Integral and IE Regions; Physical Optics using HFSS (High Frequency Structural Simulator)

Transcript of ANSYS Simulation Advances for RF Microwave Antenna Applications

Page 1: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 20111

Simulation Advances for RF, Microwave and Antenna Applications

Presented by Martin Vogel, PhDApplication Engineer

Page 2: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 20112

• Advanced Integrated Solver Technologies– Finite Arrays with Domain Decomposition– Hybrid solving: FEBI, IE Regions

• Physical Optics Solver in HFSS‐IE• Improved Multi‐Physics flow in Workbench

Overview

Page 3: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 20113

Advanced Solvers:Finite Arrays with DDM

Page 4: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 20114

Finite Arrays with Domain DecompositionEfficient solution for repeating geometries (array) with domain decomposition technique (DDM)

Page 5: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 20115

A Review: Domain Decomposition

Distributes mesh domains to network of processors

Significantly increases simulation capacity

Highly scalable to large numbers of processors

Automatic generation of domains by mesh partitioning

• User friendly• Load balance

Distributes mesh sub-domainsto networked processors and memory

Page 6: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 20116

Finite Antenna ArraysDefine unit cell and array 

dimensions

Efficient Domain Decomposition solution

• Leverages repeating nature of array geometries

• Only mesh unit cell• Virtually repeat mesh throughout array

Post‐process full S‐parameter• Couplings included• Edge effects included

3D field visualization

Far field patterns for full array

Memory efficient Enabled with the HFSS HPC

product

Page 7: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 20117

Finite Arrays by Domain Decomposition• Each element in array treated as solution domain

• One compute engine can solve multiple elements/domains in series

Distributes element sub-domainsto networked processors and memory

Page 8: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 20118

Example: Skewed Waveguide Array

• 16X16 (256 elements and excitations)

• Skewed Rectangular Waveguide (WR90) Array– 1.3M Matrix Size

• Using 8 cores– 3 hrs. solution time– 0.4GB Memory total

• Using 16 cores– 2 hrs. solution time– 0.8GB Memory total

• Additional Cores– Faster solution time– More memory. 

Unit cell shown with wireframe view of virtual array

Page 9: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 20119

Skewed Waveguide Array

• Patterns from 8X8 Array– Dashed is 

idealized infinite array analysis

– Solid from finite array analysis 

• Two simulations use identical mesh

• Note edge effects due to finite array size

Page 10: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201110

Running Finite Array

Use Master/Slave unit cell design to adapt the mesh

• Called “Unit Cell for Adaptive Meshing” in image

Copy/Paste Design• Called “8X8 Array” in image

Create a single pass setup in finite array design

On “Advanced” tab use “Setup Link” to link mesh from unit cell design

Doing adaptive meshing in finite array design will be time consuming and not as efficient

Page 11: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201111

Efficient: 8X8 Array Patch Array

Direct solver with 12 cores• 5:05:14• 60.8 GB RAM

Finite Array DDM with 12 cores

• 00:44:53• 1.8 GB

6.8X faster33.8X less memory

Page 12: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201112

HPC: Faster with additional coresLinux cluster• 16X Dell PowerEdge R610

– Dual six‐core Xeon X5760, 8GB per core

Same 8X8 array of probe feed patch antennas

3M+ matrix size, 64 excitations 

Study performed using 101, 51 ,26, 11, 6 and 3 engines.*• 101 simulation time = 17 min., 20X faster than direct solver• *Three engines used as baseline

1

2

3

4

5

6

7

0 50 100 150

speed factor

speed factor

Number of cores

Page 13: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201113

Hybrid Solving: Finite Element‐Boundary Integral

Page 14: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201114

• Antenna Placement Study: UHF Antenna on Apache UH64 airframe– Finite Elements with DDM– Boundary Integral (3D Method of Moments)– Hybrid Finite Element‐Boundary Integral (FE‐BI)

Finite Element‐Boundary IntegralSolving Larger Problems with Rigor

Page 15: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201115

Hybrid Solving: Finite Element‐ Boundary Integral

Apache helicopter• UHF antenna placement study @ 900 MHz

Solution volume• 1,250 m3

• 33,750 λ3

Solution Specs• 72 engines• Matrix size = 47M• 6 adaptive passes• 300 GB RAM• 5 hr 30 min

Finite Elements with DDM

Page 16: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201116

Hybrid Solving: Finite Element‐ Boundary Integral

Apache helicopter• UHF antenna placement study @ 900 MHz

Solution surface• 173 m2

• 1557 λ2

Solution Specs• 12 core MP• 680k unknowns• 9 adaptive passes• 83 GB RAM• 5 hr 28 min

Boundary Integral, 3D MoM with HFSS‐IE

Page 17: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201117

Hybrid Solving: Finite Element‐ Boundary Integral

Apache helicopter• UHF antenna placement study @ 900 MHz

FEM solution volume• 69 m3

• 1863 λ3

IE solution surface• 236 m2

• 2124 λ2

Solution Specs• 12 cores total using DDM with MP

• Matrix Size = 2.9M• 6 adaptive passes• 21 GB RAM• 1 hr 3 min

Hybrid Finite Element – Boundary Integral

Compared to 72 core FEM solution 14X less memory, 5.5 times faster

Page 18: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201118

Summary of FEBI performance

Type Time, Ratio Memory, Ratio

FEM + DDM 5hr 30min, 1 300GB, 1

IE 5hr 28min, 1 83GB, 3.6

FEBI 1hr 3min, 5.5 21 GB, 14.3

Page 19: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201119

FE‐BI and Distributed Solving

HPC distributes mesh sub-domains, FEM and IE domains,to networked processors and memory

FEM Domain 1

FEM Domain 2

FEM Domain 3

FEM Domain 4

IE Domain

• Distributes mesh sub‐domains to network of processors• FEM volume can be sub‐divided into multiple domains

• IE Domain is distributed to second node in machine list

• Significantly increases simulation capacity

• Multi‐processor nodes can be utilized

Page 20: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201120

Hybrid Solving: IE Regions

Page 21: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201121

FEBI and Physically Separate “Domains”Reflector with multiple FE‐BI domains• Conducting reflector and feed horn each surrounded by air with FEBI applied to surface of air volumes

• But 3D MoM solution from integral equations could be applied directly to reflector’s conducting surface only

Page 22: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201122

HFSS Hybrid Solving – IE Regions

• Parallelized– IE regions 

solved in parallel.

– Analogous to FEM domains

• Rigorous– Multiple 

reflections

• Automated

Page 23: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201123

HFSS IE Regions ‐ Example

Page 24: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201124

Physical Optics

Page 25: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201125

HFSS‐IE POAsymptotic solver for very large 

geometries• In HFSS‐IE• Currents are approximated in illuminated regions– Set to zero in shadow regions

• No ray tracing or multiple “bounces”

Target applications:• Large reflector antennas• RCS of large objects such as satellites

Option in solution setup for HFSS‐IESourced by incident wave excitations• Plane waves or linked HFSS designs as a source

Page 26: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201126

Physical Optics Solver in HFSS-IE

• For illuminated surfaces Jsurf ≈2(n x Hinc ) if perfect conductor.

• For non-illuminated surfaces Jsurf ≈ 0.

• No need to solve a large matrix equation.

Where: JPO = 2(n x Hinc )

PEC

Page 27: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201127

PO Examples

Notice the shadowing of the gun barrel on the tank and of the tank on the ground.

Page 28: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201128

HFSS‐IE PO ‐ Example

Offset reflector 50 λ0 in diameter fed by a horn HFSS far field link

Simulated with 8 coresIE: 48.3min and 11.9GBPO: 23S and 286MBNote > 120x speedup

Page 29: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201129

ANSYS Workbench• Geometry and material transfer

Page 30: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201130

Ansoft to ANSYS Geometry Transfer

• Geometry and material assignment transfer from electromagnetic tools to ANSYS Thermal and Mechanical

CAD tool

Page 31: ANSYS Simulation Advances for RF Microwave Antenna Applications

© 2011 ANSYS, Inc. October 24, 201131

Highlights• New technique for finite phased‐array antennas• IE Regions• Physical Optics Solver in HFSS‐IE

• Improved Multiphysics flow