AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint...

44
Angular Motion Maximum Hand, Foot, or Equipment Linear Speed

Transcript of AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint...

Page 1: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Angular  Motion  Maximum  Hand,  Foot,  or  Equipment  Linear  

Speed  

Page 2: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Joint Linear Speeds 2

Radius of Rotation

Joint 2 Angular Velocity

Joint 2 Torque

Angular Inertia

Application Time of the Joint Torque

Mass Radius of Resistance

Muscle Force

Moment Arm

Joint Linear Speeds 1

Radius of Rotation

Joint 1 Angular Velocity

Joint 1 Torque

Angular Inertia

Application Time of the Joint Torque

Mass Radius of Resistance

Muscle Force

Moment Arm

Hand, Foot, or Equipment Linear Speed

Joint Linear Speeds 3

Radius of Rotation

Joint 3 Angular Velocity

Joint 3 Torque

Angular Inertia

Application Time of the Joint Torque

Mass Radius of Resistance

Muscle Force

Moment Arm

Joint Linear Speeds 4

Radius of Rotation

Joint 4 Angular Velocity

Angular Inertia

Joint  4  Torque  

Application Time of the Joint Torque

Moment Arm

Muscle Force

Radius of Resistance Mass

Joint Linear Speeds5

Radius of Rotation

Joint 5 Angular Velocity

Angular Inertia

Joint  5  Torque  

Application Time of the Joint Torque

Moment Arm

Muscle Force

Radius of Resistance Mass

External Forces

Friction Force

Vertical Ground Reaction Force

Coefficient of Friction

Cleat Force

Biomechanical  Model:  Angular  Mo3on  Maximum  Hand,  Foot,  or  Equipment  Linear  Speed  

Sum  of  Joint  Linear  Speeds  Principle  

Slide  1  of  6  

Slide  2  of  6  

Slide  3  of  6  

Slide  4  of  6  

Slide  5  of  6  

Slide  6  of  6  

Page 3: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Joint Linear Speeds 1

Radius of Rotation

Joint 1 Angular Velocity

Joint  1    Torque  

Angular Inertia

Application Time of the Joint Torque

Mass Radius of Resistance

Muscle Force

Moment Arm

Biomechanical  Model:  Angular  Mo3on  Maximum  Hand,  Foot,  or  Equipment  Linear  Speed  (Slide  1  of  6)  

Page 4: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Biomechanical  Model:  Angular  Mo3on  Maximum  Hand,  Foot,  or  Equipment  Linear  Speed  (Slide  2  of  6)  

Joint Linear Speeds 2

Radius of Rotation

Joint 2 Angular Velocity

Joint  2    Torque  

Angular Inertia

Application Time of the Joint Torque

Mass Radius of Resistance

Muscle Force

Moment Arm

Page 5: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Biomechanical  Model:  Angular  Mo3on  Maximum  Hand,  Foot,  or  Equipment  Linear  Speed  (Slide  3  of  6)  

Joint Linear Speeds 3

Radius of Rotation

Joint 3 Angular Velocity

Joint  3  Torque  

Angular Inertia

Application Time of the Joint Torque

Mass Radius of Resistance

Muscle Force

Moment Arm

Page 6: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Joint Linear Speeds 4

Radius of Rotation

Joint 4 Angular Velocity

Angular Inertia

Joint 4 Torque

Application Time of the Joint Torque

Moment Arm

Muscle Force

Radius of Resistance Mass

Biomechanical  Model:  Angular  Mo3on  Maximum  Hand,  Foot,  or  Equipment  Linear  Speed  (Slide  4  of  6)  

Page 7: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Joint Linear Speeds 5

Radius of Rotation

Joint 5 Angular Velocity

Angular Inertia

Joint 5 Torque

Application Time of the Joint Torque

Moment Arm

Muscle Force

Radius of Resistance Mass

Biomechanical  Model:  Angular  Mo3on  Maximum  Hand,  Foot,  or  Equipment  Linear  Speed  (Slide  5  of  6)   Linear  Speed  –  

Angular  Velocity  Principle  

Angular  Impulse  –  Momentum  Principle  

Joint  Torque  Principle  

Angular  Inertia  Principle  

Page 8: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

External Forces

Friction Force

Vertical Ground Reaction Force

Coefficient of Friction

Muscle Forces

Cleat Force

Biomechanical  Model:  Angular  Mo3on  Maximum  Hand,  Foot,  or  Equipment  Linear  Speed  (Slide  6  of  6)  

External  Forces  Principle  

Friction  Force  Principle  

Action-­‐Reaction  Principle  

=  

Page 9: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

� Sum  of  Joint  Linear  Speeds  Principle  

Biomechanical  Model  Angular  Mo3on    (Slide  1  of  6)  

Joint Linear

Speeds 5

Hand, Foot, or Equipment Linear Speed

Joint Linear

Speeds 1

Joint Linear

Speeds 3

Joint Linear

Speeds 2

Joint Linear

Speeds 4

Page 10: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

rtωr=s

� Linear  Speed  –  Angular  Velocity  Principle  

Biomechanical  Analysis:  Angular  Mo3on    Max.  Hand,  Foot,  or  Equipment      Linear  Speed  

Joint Linear Speed

Radius of Rotation

Joint Angular Velocity

Page 11: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

ITtω =

� Angular  Impulse  –  Momentum  Principle  

Biomechanical  Analysis:  Angular  Mo3on    Max.  Hand,  Foot,  or  Equipment      Linear  Speed  

Angular Inertia

Joint Angular Velocity

Joint Torque

Application Time of the Joint Torque

Page 12: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

⊥= dFT MJ

�  Joint  Torque  Principle  

Biomechanical  Analysis:  Angular  Mo3on    Max.  Hand,  Foot,  or  Equipment      Linear  Speed  

Joint Torque

Moment Arm

Muscle Force

Page 13: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

2rsmrI =

� Angular  Inertia  Principle  

Biomechanical  Analysis:  Angular  Mo3on    Max.  Hand,  Foot,  or  Equipment      Linear  Speed  

Angular Inertia

Radius of Resistance Mass

Page 14: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

� Action  –  Reaction  Principle  

Biomechanical  Analysis:  Angular  Mo3on    Max.  Hand,  Foot,  or  Equipment      Linear  Speed  

Muscle Force

External Forces

Page 15: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

� External  Forces  Principle  

Biomechanical  Analysis:  Angular  Mo3on    Max.  Hand,  Foot,  or  Equipment      Linear  Speed  

External Forces

Friction Force

Vertical Ground Reaction Force

Cleat Force

Page 16: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

VGRFR µFF =

� Friction  Force  Principle  

Biomechanical  Analysis:  Angular  Mo3on    Max.  Hand,  Foot,  or  Equipment      Linear  Speed  

Friction Force

Coefficient of Friction

Vertical Ground Reaction Force

Page 17: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Biomechanical  Model:  Angular  Mo3on  Maximum  Linear  Hand  Speed  for  a  Baseball  Throw  

Joint Linear Speed of the RT Shoulder & All Joints

Lateral to the Longitudinal Axis of the RT Upper Arm

Radius of Rotation

Joint Angular Velocity

RT Shoulder IR Torque

Angular Inertia

Application Time of the Joint Torque

Mass Radius of Resistance

Muscle Force

Moment Arm

Joint Linear Speed of the RT Wrist & All Joints

Distal to the RT Wrist

Radius of Rotation

Joint Angular Velocity

RT Wrist FL Torque

Angular Inertia

Application Time of the Joint Torque

Mass Radius of Resistance

Muscle Force

Moment Arm

Hand, Foot, or Equipment Linear Speed

Joint Linear Speed of the SH Girdle & All Joints

Lateral to the Spine

Radius of Rotation

Joint Angular Velocity

SH Girdle LR Torque

Angular Inertia

Application Time of the Joint Torque

Mass Radius of Resistance

Muscle Force

Moment Arm

Joint Linear Speed of the LT Hip & All Joints Superior to the LT Hip

Radius of Rotation

Joint Angular Velocity

Angular Inertia

LT  Hip  FL  Torque  

Application Time of the Joint Torque

Moment Arm

Muscle Force

Radius of Resistance Mass

Joint Linear Speed of the LT Hip & All Joints

Medial to the Longitudinal Axis of LT Upper Leg

Radius of Rotation

Joint Angular Velocity

Angular Inertia

LT  Hip  IR  Torque  

Application Time of the Joint Torque

Moment Arm

Muscle Force

Radius of Resistance Mass

External Forces

Friction Force

Vertical Ground Reaction Force

Coefficient of Friction

Cleat Force

The  increase  in  joint  linear  speeds  distal  to  the  _________  

Page 18: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Biomechanical  Model:  Angular  Mo3on  Maximum  Linear  Hand  Speed  for  a  Baseball  Throw  

Joint Linear Speed of the RT Shoulder & All Joints

Lateral to the Longitudinal Axis of the RT Upper Arm

Radius of Rotation

Joint Angular Velocity

RT Shoulder IR Torque

Angular Inertia

Application Time of the Joint Torque

Mass Radius of Resistance

Muscle Force

Moment Arm

Joint Linear Speed of the RT Wrist & All Joints

Distal to the RT Wrist

Radius of Rotation

Joint Angular Velocity

RT Wrist FL Torque

Angular Inertia

Application Time of the Joint Torque

Mass Radius of Resistance

Muscle Force

Moment Arm

Hand, Foot, or Equipment Linear Speed

Joint Linear Speed of the SH Girdle & All Joints

Lateral to the Spine

Radius of Rotation

Joint Angular Velocity

SH Girdle LR Torque

Angular Inertia

Application Time of the Joint Torque

Mass Radius of Resistance

Muscle Force

Moment Arm

Joint Linear Speed of the LT Hip & All Joints Superior to the LT Hip

Radius of Rotation

Joint Angular Velocity

Angular Inertia

LT  Hip  FL  Torque  

Application Time of the Joint Torque

Moment Arm

Muscle Force

Radius of Resistance Mass

Joint Linear Speed of the LT Hip & All Joints

Medial to the Longitudinal Axis of LT Upper Leg

Radius of Rotation

Joint Angular Velocity

Angular Inertia

LT  Hip  IR  Torque  

Application Time of the Joint Torque

Moment Arm

Muscle Force

Radius of Resistance Mass

External Forces

Friction Force

Vertical Ground Reaction Force

Coefficient of Friction

Cleat Force

____  to  push  against  

Allows  ____  to  be  exerted  

The  coordinated  increase  in  joint  linear  speeds  distal  to  the  _________  

The  increase  in  joint  linear  speeds  distal  to  the  _________  

Page 19: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Biomechanical  Model:  Angular  Mo3on  Maximum  Linear  Clubhead  Speed  for  a  Golf  Swing  

Joint Linear Speed of the LT Forearm & All Joints Lateral to the Longitudinal

Axis of the LT Forearm

Radius of Rotation

Joint Angular Velocity

LT Forearm SUP Torque

Angular Inertia

Application Time of the Joint Torque

Mass Radius of Resistance

Muscle Force

Moment Arm

Joint Linear Speed of the RT Forearm & All Joints Lateral to the Longitudinal

Axis of the RT Forearm

Radius of Rotation

Joint Angular Velocity

RT Forearm PRO Torque

Angular Inertia

Application Time of the Joint Torque

Mass Radius of Resistance

Muscle Force

Moment Arm

Hand, Foot, or Equipment Linear Speed

Joint Linear Speed of the LT Shoulder & All Joints

Distal to the Anterior-Posterior Axis of the LT Shoulder

Radius of Rotation

Joint Angular Velocity

LT Shoulder ABD Torque

Angular Inertia

Application Time of the Joint Torque

Mass Radius of Resistance

Muscle Force

Moment Arm

Joint Linear Speed of the SH Girdle & All Joints

Lateral to the Spine

Radius of Rotation

Joint Angular Velocity

Angular Inertia

SH Girdle LR Torque  

Application Time of the Joint Torque

Moment Arm

Muscle Force

Radius of Resistance Mass

Joint Linear Speed of the LT Hip & All Joints

Medial to the Longitudinal Axis of LT Upper Leg

Radius of Rotation

Joint Angular Velocity

Angular Inertia

LT  Hip  IR  Torque  

Application Time of the Joint Torque

Moment Arm

Muscle Force

Radius of Resistance Mass

External Forces

Friction Force

Vertical Ground Reaction Force

Coefficient of Friction

Cleat Force

____  to  push  against  

Allows  ____  to  be  exerted  

The  coordinated  increase  in  joint  linear  speeds  distal  to  the  _________  

The  increase  in  joint  linear  speeds  distal  to  the  _________  

Page 20: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Biomechanical  Model:  Angular  Mo3on  Maximum  Linear  Foot  Speed  for  a  Soccer  Goal  Kick  

Radius of Rotation

Joint Angular Velocity

LT  Hip  IR  Torque

Angular Inertia

Application Time of the Joint Torque

Mass Radius of Resistance

Muscle Force

Moment Arm

Hand, Foot, or Equipment Linear Speed

Radius of Rotation

Joint Angular Velocity

RT Hip FL Torque

Angular Inertia

Application Time of the Joint Torque

Mass Radius of Resistance

Muscle Force

Moment Arm

Radius of Rotation

Joint Angular Velocity

Angular Inertia

RT  Knee  EXT  Torque  

Application Time of the Joint Torque

Moment Arm

Muscle Force

Radius of Resistance Mass

External Forces

Friction Force

Vertical Ground Reaction Force

Coefficient of Friction

Cleat Force

Joint Linear Speed of the LT Forearm & All Joints Lateral to the Longitudinal

Axis of the LT Forearm

Joint Linear Speed of the LT Forearm & All Joints Lateral to the Longitudinal

Axis of the LT Forearm

Joint Linear Speed of the LT Forearm & All Joints Lateral to the Longitudinal

Axis of the LT Forearm

The  coordinated  increase  in  joint  linear  speeds  distal  to  the  _________  

The  increase  in  joint  linear  speeds  distal  to  the  _________  

____  to  push  against  

Allows  ____  to  be  exerted  

Page 21: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Locomotion  –  Minimum  Movement  Time  

Fundamental  Biomechanical  Principles  

Page 22: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Sum  of  Joint  Linear  Speeds  Principle  � A  body’s  total  linear  speed  is  the  result  of  an  optimal  combination  of  individual  joint  linear  speeds.    

� The  identification  of  this  optimal  combination  of  joint  linear  speeds  is  a  skill  that  all  individuals  interested  in  understanding  human  movement  must  develop  

Page 23: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Linear  Speed  –  Angular  Velocity  Principle  � Radius  of  Rotation  (rrt)  

�  The  straight-­‐line  distance  from  a  joint/body  axis  of  rotation  to  a  point  on  a  body  segment  

� Unit  of  measurement  �  meters  (m)  

�  Linear  Speed  (s)  �  This  is  the  straight-­‐line  speed  of  a  point  on  a  body  segment  (i.e.,  the  hand,  the  foot,  the  torso,  the  head,  etc.)  

� Unit  of  measurement  �  meters  per  second  (m/s)  

Page 24: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Linear  Speed  –  Angular  Velocity  Principle  � Angle  (θ)  

�  An  angle  is  formed  by  the  intersection  of  two  lines  � Unit  of  Measurement  

�  Radians  (rad)  

� Angular  Velocity  (ω)  � How  fast  does  an  angle’s  value  (Δθ)  change  �  The  speed  of  joint/body  rotation  � Unit  of  measurement  

�  Radians  per  second  (rad/s)  

Page 25: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Linear  Speed  –  Angular  Velocity  Principle  � Real-­‐World  Application  

�  An  increase  in  linear  speed  (s)  of  a  point  on  a  rotating  body  segment  is  caused  by  an  increase  in  the  body  segment’s  angular  velocity  (ω)  and/or    an  increase  the  radius  of  rotation  (rrt).  

rtωrs =

Page 26: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Δθ  Radius  of  rotation  (r

RT)  

Axis  of  rotation  

Time  2  location   Time  1  location  s21  

s11  

s22  

s21  

Page 27: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

180  degrees      π  radians  

Conversion  Factor    180  degrees  =  π  radians  

90  degrees                  radians  2π

135  degrees                  radians  43π

Example:   radians2π

180(ππ(90)degrees90 ==

Page 28: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Angular  Impulse-­‐Momentum  Principle  � Newton’s  2nd  Law  of  Motion  (Angular)  

�  If  a  net  torque  is  exerted  on  an  object,  the  object  will  angularly  accelerate  in  the  direction  of  the  net  torque,  and  its  angular  acceleration  will  be  proportional  to  the  net  torque  and  inversely  proportional  to  its  angular  inertia  

�  The  equation  for  Newton’s  2nd  Law  of  Motion  (Angular)  is  

IαΣT =

Page 29: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Angular  Impulse-­‐Momentum  Principle  � The  Angular  Impulse-­‐Momentum  Principle  is  derived  from  Newton’s  2nd  Law  of  Motion  (Angular)  

IαΣT =

⎟⎠

⎞⎜⎝

⎛=tΔωIΣT

( )ΔωIΣTt =

Page 30: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Angular  Impulse-­‐Momentum  Principle  � ΣTt  is  known  as  angular  impulse  

� Unit  of  measurement  �  Newton-­‐meter-­‐sec  (N-­‐m-­‐s)  

�  I(Δω)  is  known  as  the  change  in  angular  momentum  � Unit  of  measurement  

�  kilogram  meter  squared  per  second  (kg-­‐m2/s)  

Page 31: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Angular  Impulse-­‐Momentum  Principle  � Real-­‐World  Application  

�  An  increase  in  angular  velocity  of  a  body  segment  is  caused  by  an  increase  in  the  joint  torque,  and/or  an  increase  in  the  application  time  of  the  joint  torque  and/or  a  decrease  in  the  body  segment’s  angular  inertia.  

IΣTtΔω =

Page 32: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Angular  Iner3a  Principle  � The  property  of  an  object  to  resist  changes  in  its  angular  momentum  �  The  smaller  the  body  segment’s  angular  inertia;  the  easier  it  is  for  the  body  segment  to  rotate  quickly  

�  Factors  Influencing  Angular  Inertia  � mass  (m)  �  radius  of  resistance  (rrs)  

�  the  linear  distance  from  the  body  segment’s  axis  of  rotation  to  the  center  of  mass  of  the  body  segment  

Page 33: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Angular  Iner3a  Principle  � Real-­‐World  Application  

�  A  decrease  in  a  body  segment’s  angular  inertia  is  caused  by  a  decrease  in  the  body  segment’s  mass  (m)  and/or  a  decrease  in  the  radius  of  resistance.  

� Unit  of  measurement  �  kilogram  meter  squared  (kg-­‐m2)  

2rsmrI =

Page 34: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Angular  Iner3a  Principle  � An  object  may  have  more  than  one  moment  of  inertia  

�  an  object  may  rotate  about  more  than  one  axis  of  rotation  

� Body  movements  may  change  the  distribution  of  mass  about  a  specific  axis  of  rotation,  thus  changing  the  angular  inertia  about  that  axis    �  A  human's  angular  inertia  about  any  axis  is  variable  �  Examples  

�  Figure  Skating  �  Diving  

Page 35: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius
Page 36: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius
Page 37: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Joint  Torque  Principle  � What  is  a  Torque?  

�  It  is  the  effect  of  a  muscle  force  to  cause  a  joint  rotation  � Muscle  Force  

� Muscle  forces  are  caused  by  muscle  contractions  �  These  contractions  pull  on  bones  

� Muscle  forces  are  known  as  eccentric  forces  �  An  eccentric  force  is  a  force  that  does  not  pass  through  the  joint  connecting  two  body  segments  

Page 38: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Joint  Torque  Principle  � Torque  is  directly  related  to  the  size  of  the  muscle  force  that  creates  it  �  The  larger  the  muscle  force,  the  larger  the  torque  

� Torque  is  also  influenced  by    �  The  distance  from  the  line  of  action  of  the  muscle  force  relative  to  the  axis  of  rotation  of  the  joint  

�  This  distance  is  called  the  moment  arm  (d⊥)  �  See  Figure  5.6  

Page 39: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Joint  Torque  Principle  � Real-­‐World  Application  

�  An  increase  in  joint  torque  is  caused  by  an  increase  in  a  muscle  force  pulling  on  the  bones  that  are  held  together  at  the  joint  and/or  an  increase  in  the  moment  arm.      

�  The  line  of  pull  of  the  muscle  force  is  determined  by  connecting  a  line  between  the  attachments  (origin  and  insertion)  of  the  muscle  into  bones  held  together  at  the  joint.    

⊥= dFT MJ

Page 40: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

d⊥  

axis  of  rotation  

muscle  force  

moment  arm  

Page 41: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Ac3on  –  Reac3on  Principle  � This  principle  is  derived  from  Newton’s  3rd  Law  of  Motion  (Linear)  �  For  every  action  there  is  an  equal  and  opposite  reaction      

� This  principle  may  be  interpreted  in  several  different  ways.  �  For  this  Biomechanical  Model,  the  principle  is  interpreted  as  follows:  �  for  any  muscle  to  create  its  greatest  amount  of  muscle  force,  an  oppositely  directed  external  force  of  equal  magnitude  must  exist.    

Page 42: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

External  Forces  Principle  � This  principle  may  be  interpreted  in  several  different  ways.      �  For  this  Biomechanical  Model,  the  principle  is  interpreted  as  follows:    �  Whenever  the  body  is  in  contact  with  the  ground,  there  are    two  ground  reaction  forces    (one  vertical  and  one  horizontal)  that  can  oppose  the  muscle  forces  create  inside  the  body.    

Page 43: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Fric3on  Force  Principle  �  Friction  Force  

�  The  horizontal  ground  reaction  force  between  your  foot  and  the  ground  

VGRFR µFF =

Page 44: AngularMotion …...Angular Velocity Joint 2 Torque Angular Inertia Application Time of the Joint Torque Mass Radius of Resistance Muscle Force Moment Arm Joint Linear Speeds 1 Radius

Fric3on  Force  Principle  � Real-­‐World  Application  

�  An  increase  in  friction  force  is  caused  by    �  an  increase  in  the  coefficient  of  friction  (µ)  and/or    �  an  increase  in  the  vertical  ground  reaction  force  

�  The  coefficient  of  friction  is  a  number  that  represents  the  material  properties  of  a  surface  that  influence  friction  force:  �  hardness/softness  �  smoothness/roughness  

�  Friction  force  does  not  increase  if  the  contact  area  increases!