An Overview of Numerical Radiation Transport Techniques in ...

13
LLNL-PRES-821466 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. An Overview of Numerical Radiation Transport Techniques in Asteroid Deflection Modeling Planetary Defense Conference 2021 Nicholas A. Gentile April 28, 2021 Vienna, Austria P. O. Box 808, Livermore, CA 94551

Transcript of An Overview of Numerical Radiation Transport Techniques in ...

LLNL-PRES-821466This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

An Overview of Numerical Radiation Transport Techniques in Asteroid Deflection Modeling

Planetary Defense Conference 2021

Nicholas A. Gentile

April 28, 2021Vienna, Austria

P. O. Box 808, Livermore, CA 94551

Lawrence Livermore National Laboratory LLNL-PRES-8214662 / 13

Ā§ Inertial confinement fusion (ICF) and asteroid simulations share some commonalities and challengesā€¢ Both have large length, density, and opacity scales

Ā§ ICF codes discretize in space and timeā€” Zones have r, T, P, radiation intensity, etc.ā€” Energy deposition done by a radiation transport methodā€” Hydrodynamic motion and shocks handled by a hydro methodā€” Radiation and matter are coupled by thermal emission from material and electron

and ion conduction

Ā§ Transport dominates the simulation run timeā€¢ We face tradeoffs in the radiation methods between speed and accuracy

Photon transport is necessary to accurately model deflection scenarios using x-ray deposition

ā€¢ Both model round things suspended in vacuum hit by x-rays

ā€¢ We can use the same code for both

Lawrence Livermore National Laboratory LLNL-PRES-8214663 / 13

The transport equation describes the motion of photons including interactions with moving matter

Ā§ This is the Boltzmann equation written in terms of Intensity ā€¢ I has units of Energy/(Length2-Time-Steradian)

Ā§ Material motion corrections (MMC) need to be includedā€¢ Emission isnā€™t isotropic, absorption is angle dependentā€¢ There are many O(v/c) MMC approximations; also many numerical

simplifications are employed, some inaccurate

Ā§ Radiation exchanges energy and momentum with matter

1

c

@I(āŒ«,āŒ¦)

@t+ āŒ¦ Ā·rI(āŒ«,āŒ¦) =ļæ½ ļæ½Dļæ½aI(āŒ«,āŒ¦) + ļæ½a

B[āŒ«, T ]

[ļæ½D(āŒ¦)]2

+

Z 1

0dāŒ«0

Z

4ā‡”dāŒ¦0 āŒ«

āŒ«0ļæ½s(āŒ«

0 ! āŒ«,āŒ¦0 ! āŒ¦)I(āŒ«0,āŒ¦0)

1 +

c2I(āŒ«,āŒ¦)

2hāŒ«3

ļæ½

ļæ½Z 1

0dāŒ«0

Z

4ā‡”dāŒ¦0ļæ½s(āŒ« ! āŒ«0,āŒ¦ ! āŒ¦0)I(āŒ«,āŒ¦)

1 +

c2I(āŒ«0,āŒ¦0)

2hāŒ«03

ļæ½

<latexit sha1_base64="7kA7Lu8OQ7jd8tYuB7vbUNorM+0=">AAAESnicpZPPb9MwFMezdMAovzY4cnliouk0NjXdJLggTYMDnBjSfkl1WhzXaa3FTmQ7oMry38eFEzf+CC4cQIgLTpNtbTdOWEry9L7f95zPSxznKVO60/m25DeWb9y8tXK7eefuvfsPVtceHquskIQekSzN5GmMFU2ZoEea6ZSe5pJiHqf0JD57VeonH6lULBOHepLTiOORYAkjWLvUYM3/YEKUOYch1hqUY6kZTs3bNhLFM/SO0xHesJXhQtTWWtiEZiUDIsNMAxI4TvFCIbyE1hagEeYcw2tAio04HmCYc8Fm80JAicTE7PdK+TCypnde267NUb9rW4BQs7UJiAk96PSNeyZ6YgFxrMeSm6ELRRFUutkFlLN5cdoqqDdzVlveAnv+fqpdlUs2GmssZfap7Pfssm5WqBmmREGNFGwASmmiexC6OVXbkH53HtuaLozLxv0dW3WMoIVEJgoeU1kSbv0/4QzQIk9wDnQNT7Cx8In+jXPJfAEUzBI1B6vrne3OdMHVIKyDda9eB4PVr2iYkYJToUmKleqFnVxHpvz5SEptExWK5pic4RHtuVBgTlVkpkfBwlOXGUKSSXcJDdPsbIXBXKkJj52zHJda1MrkdVqv0MmLyDCRF5oKUm2UFCnoDMpzBUMmKdHpxAWYSObeFcgYu1Fpd/rKIYSLyFeD4+52uLPdfb+7vrdfj2PFe+w98dpe6D339rw33oF35BH/s//d/+n/anxp/Gj8bvyprP5SXfPIm1vLy38BpDpjDw==</latexit>

D āŒ˜ 1ļæ½ āŒ¦ Ā· vc

<latexit sha1_base64="AopldjTpG3fAKQ/fVEZPBR8NFjg=">AAACD3icbVDLSsNAFJ34rPUVdelmsChuLEkVdFnUhTsr2Ac0oUymN+3QycOZSaGE/IEbf8WNC0XcunXn3zhpu9DWAxcO59zLvfd4MWdSWda3sbC4tLyyWlgrrm9sbm2bO7sNGSWCQp1GPBItj0jgLIS6YopDKxZAAo9D0xtc5X5zCEKyKLxXoxjcgPRC5jNKlJY65tE1duAhYUNs4xPs3AbQI9ih3UhhxxeEpsMspVmxY5assjUGnif2lJTQFLWO+eV0I5oEECrKiZRt24qVmxKhGOWQFZ1EQkzogPSgrWlIApBuOv4nw4da6WI/ErpChcfq74mUBFKOAk93BkT15ayXi/957UT5F27KwjhRENLJIj/hWEU4Dwd3mQCq+EgTQgXTt2LaJzoGpSPMQ7BnX54njUrZPi1X7s5K1ctpHAW0jw7QMbLROaqiG1RDdUTRI3pGr+jNeDJejHfjY9K6YExn9tAfGJ8/muubKQ==</latexit>

ļæ½ āŒ˜āœ“1ļæ½ v2

c2

ā—†ļæ½ 12

<latexit sha1_base64="6IUXUdNhizlg08z57tPKY6u+G4o=">AAACKHicbVBNSwMxEM36bf2qevQSLIIeWnaroDdFLx4VbCt0a8mms20w2V2T2UJZ9ud48a94EVHEq7/E9OOg1gczPN6bIZkXJFIYdN1PZ2Z2bn5hcWm5sLK6tr5R3NyqmzjVHGo8lrG+DZgBKSKooUAJt4kGpgIJjeD+Yug3+qCNiKMbHCTQUqwbiVBwhlZqF0/9LlOKUR8eUtGnvoQQ9z1apn6oGc/6d9U847b5WnR7eHCXlceGl2fVnOaFdrHkVtwR6DTxJqREJrhqF1/9TsxTBRFyyYxpem6CrYxpFFxCXvBTAwnj96wLTUsjpsC0stGhOd2zSoeGsbYVIR2pPzcypowZqMBOKoY989cbiv95zRTDk1YmoiRFiPj4oTCVFGM6TI12hAaOcmAJ41rYv1LeYzYItNkOQ/D+njxN6tWKd1ipXh+Vzs4ncSyRHbJL9olHjskZuSRXpEY4eSTP5I28O0/Oi/PhfI5HZ5zJzjb5BefrG2ihpZM=</latexit>

B(āŒ«, T ) =2hāŒ«3

c2

exp

āœ“hāŒ«

kT

ā—†ļæ½ 1

ļæ½ļæ½1

<latexit sha1_base64="glOAY0XrCAgtCXXMP0HsImbCG50=">AAACR3icbZBLa9tAFIVH7it1H3HSZTeXmoIDjZGcQrMJhGTTZQp2ErBkMxpf2YNHIzFzVWKE/l023WaXv5BNFy0ly4wtL5rHhYGPc85lZk6cK2nJ96+9xrPnL16+2njdfPP23fvN1tb2qc0KI3AgMpWZ85hbVFLjgCQpPM8N8jRWeBbPj5f+2U80Vma6T4sco5RPtUyk4OSkcWt01Al18QX6O3AAYWK4KHswA6eN9qpSjHoVhAoTGkKIF3nNnTq3SlXlHPpVaOR0RjuwCwHUDNGo3A2qcavtd/3VwGMI1tBm6zkZt67CSSaKFDUJxa0dBn5OUckNSaGwaoaFxZyLOZ/i0KHmKdqoXPVQwWenTCDJjDuaYKX+v1Hy1NpFGrtkymlmH3pL8SlvWFCyH5VS5wWhFvVFSaGAMliWChNpUJBaOODCSPdWEDPuSiJXfdOVEDz88mM47XWDvW7vx9f24dG6jg32kX1iHRawb+yQfWcnbMAEu2Q37A/76/3yfnv/vNs62vDWOx/YvWl4d9norwQ=</latexit>

Thermal emissionDoppler-shifted

In-scatteringPhotons move in straight lines at speed c

Out-scattering

Stimulated scattering

Absorption (Doppler-shifted)

with and arising from material motion and the Planck function describing thermal emission in Local Thermodynamic Equilibrium

Lawrence Livermore National Laboratory LLNL-PRES-8214664 / 13

The two common numerical methods for transport simulations are IMC and SNĀ§ Implicit Monte Carlo (IMC) simulates radiation by computational particles with

randomly selected emission positions and directionsā€¢ Emit, scatter, track, and absorb ā€œfakeā€ photonsā€¢ ā€œimplicitā€ refers to a numerical extrapolation in time of the matter temperature used in emissionā€¢ Allows accurate simulation of scattering and Doppler shifts

ā€” Energy-angle correlation in Compton scattering can be simulatedā€¢ Use of random numbers causes statistical noise ~ Nparticles

-1/2 in the resultsā€” Reducing the slowly-declining noise leads to long simulation timesā€” Discretization errors in thermal emission, both temperature and emission location, require small Dx and Dtā€” Stimulated Compton is approximated or ignored

Ā§ SN or Discrete Ordinates represents I at fixed angles using finite element basis functions in each zoneā€¢ The discrete angles are selected to enable Gauss integration of spherical harmonicsā€¢ Faster than IMC (>10x in opaque problems)ā€¢ Fully implicit in emission temperature; smaller spatial discretization errorā€¢ Can simulate stimulated Comptonā€¢ The use of discrete angles makes anisotropic scattering approximate and can lead to simulation

artifacts

Lawrence Livermore National Laboratory LLNL-PRES-8214665 / 13

Computational artifacts of IMC and SN

Simulation with an isotropic point source in an absorbing non-scattering medium

Ā§ IMC simulation (top) shows statistical noise

Ā§ SN simulation shows ray effects

Ā§ IMC simulation of radiation flux in an illuminated asteroid shows statistical noise

Ā§ The electron and ion conduction flux also shows noise, seeded by the IMC through its effect on the electron temperature

ā‡„10

8erg

cm2s

<latexit sha1_base64="PFIuxooOdE5Vv6v3dd7130ocuAk=">AAACGnicbVDLSgMxFM34rPU16tJNsAiuykwV7LLoxmUF+4DOtGTSTBuaZIYkI5RhvsONv+LGhSLuxI1/Y6YdQVsPBE7OvZd77gliRpV2nC9rZXVtfWOztFXe3tnd27cPDtsqSiQmLRyxSHYDpAijgrQ01Yx0Y0kQDxjpBJPrvN65J1LRSNzpaUx8jkaChhQjbaSB7XqhRDiFnqacKOg6/Tr0ONJjyVMiR1mW/vww79egyrKBXXGqzgxwmbgFqYACzYH94Q0jnHAiNGZIqZ7rxNpPkdQUM5KVvUSRGOEJGpGeoQIZI346Oy2Dp0YZwjCS5gkNZ+rviRRxpaY8MJ25T7VYy8X/ar1Eh3U/pSJONBF4vihMGNQRzHOCQyoJ1mxqCMKSGq8Qj5HJSps0yyYEd/HkZdKuVd3zau32otK4KuIogWNwAs6ACy5BA9yAJmgBDB7AE3gBr9aj9Wy9We/z1hWrmDkCf2B9fgOcjqFB</latexit>

Lawrence Livermore National Laboratory LLNL-PRES-8214666 / 13

Flux-limited Diffusion is a quick but very approximate transport simulation techniqueĀ§ Averaging the transport equation over angle plus an ansatz for the flux

results in diffusion equation

Here is the radiation energy density (Energy/Length3) and

Ā§ Diffusion canā€™t model angular information ā€“ no shadowsĀ§ Diffusion is accurate when radiation is isotropic AND gradients in E are

smallā€¢ Ad hoc flux limiter L in [0,1] needed to suppress superluminal energy flow (F > c DE)

when s is small

Ā§ For heat conduction in electrons and ions, which typically have small flux, a similar diffusion approximation is accurate

@E

@t+r Ā· [ļæ½LF ] +

4

3r Ā· (Ev) +

1

3v Ā·rE = cļæ½aT 4 ļæ½ cļæ½aE

<latexit sha1_base64="eDnEq3vnkx2bbRbRH87xiOf0CRk=">AAACj3icbVFda9swFJXdfXRut6Xr414uC4WO0mCngQ62lrCRssEeWmjaQuyFa0VORWXZSHIgGP+d/aC97d9Mdt3184LgcM65V7pHcS64Nr7/13FXnj1/8XL1lbe2/vrN287GuzOdFYqyMc1Epi5i1ExwycaGG8EucsUwjQU7j6++1fr5ginNM3lqljmLUpxLnnCKxlLTzm8ACBOFtAxzVIajgFF1i03lAexAKDEWCCGdZQYmu2GK5pKiKH9WcATRjnczY1CVe9U99/YIFh/rCY0eNPqiHdT6Rrb9ACiEms9TBITTXwPY/U9MrQOmna7f85uCxyBoQZe0dTzt/AlnGS1SJg0VqPUk8HMTlfVaVLDKCwvNcqRXOGcTCyWmTEdlk2cFW5aZQZIpe6SBhr3bUWKq9TKNrbNOQj/UavIpbVKY5FNUcpkXhkl6fVFS2JgzqD8HZlwxasTSAqSK27cCvUSbnLFf6NkQgocrPwZn/V6w1+ufDLrDr20cq+Q9+UC2SUD2yZB8J8dkTKiz7vSdz84Xd8Pddw/d4bXVddqeTXKv3B//ALE/v8M=</latexit>

Material motion correction terms

is the radiation flux (Energy/Length2-Time) ā€¢ This expression for F is an approximation

F = ļæ½ c

3(ļæ½a + ļæ½s)rE

<latexit sha1_base64="lOjCQK7aINERPRQNrRNMsdq3DC8=">AAACGXicbZDLSgMxFIYz9VbrrerSTbAIFbHMtIJuhKIoLivYC3RKOZNm2tBMZkgyQhn6Gm58FTcuFHGpK9/GtJ2FVn8IfPznHE7O70WcKW3bX1ZmYXFpeSW7mltb39jcym/vNFQYS0LrJOShbHmgKGeC1jXTnLYiSSHwOG16w8tJvXlPpWKhuNOjiHYC6AvmMwLaWN28fY3P8bHrSyA4IeOkgouuYv0AuoCPcIrqcIxdAR4HfNXNF+ySPRX+C04KBZSq1s1/uL2QxAEVmnBQqu3Yke4kIDUjnI5zbqxoBGQIfdo2KCCgqpNMLxvjA+P0sB9K84TGU/fnRAKBUqPAM50B6IGar03M/2rtWPtnnYSJKNZUkNkiP+ZYh3gSE+4xSYnmIwNAJDN/xWQAJiVtwsyZEJz5k/9Co1xyKqXy7UmhepHGkUV7aB8VkYNOURXdoBqqI4Ie0BN6Qa/Wo/VsvVnvs9aMlc7sol+yPr8BsfeeRA==</latexit>

E = ļæ½1

c

Z

4ā‡”dāŒ¦I

<latexit sha1_base64="9w3iRXpy/4Np/HSX0HPsC/YIy7Y=">AAACGnicbVDLSgMxFM34rPU16tJNsAhuLDO1oBuhKIKurGAf0Cklk2ba0CQzJBmhDPMdbvwVNy4UcSdu/Bsz7Sy09UDg5Jx7ufceP2JUacf5thYWl5ZXVgtrxfWNza1te2e3qcJYYtLAIQtl20eKMCpIQ1PNSDuSBHGfkZY/usz81gORiobiXo8j0uVoIGhAMdJG6tnuFTyHx14gEU7cNMEp9KjQvaQKvYiaD0d6KHnSN/SWkwGCNz275JSdCeA8cXNSAjnqPfvT64c45kRozJBSHdeJdDdBUlPMSFr0YkUihEdoQDqGCsSJ6iaT01J4aJQ+DEJpntBwov7uSBBXasx9U5mtqma9TPzP68Q6OOsmVESxJgJPBwUxgzqEWU6wTyXBmo0NQVhSsyvEQ2Ri0ibNognBnT15njQrZfekXLmrlmoXeRwFsA8OwBFwwSmogWtQBw2AwSN4Bq/gzXqyXqx362NaumDlPXvgD6yvH1wmn9o=</latexit>

Lawrence Livermore National Laboratory LLNL-PRES-8214667 / 13

The Multigroup approximation is used to express frequency dependence of s and I (or E)Ā§ We pick O(10)-(100) fixed values of n; each range is called a ā€œgroupā€

ā€¢ Group bounds are constant in time and space in a simulationā€¢ We solve one transport or diffusion equation per groupā€¢ Scattering and absorption-reemission couple the groups and the per-group

equationsā€” This requires iteration in SN and FLD

ā€¢ Opacities are constant in each group during a time step

ā€¢ Recalculated in each group at the beginning of the time step to account for changes in rand T

Lines can be represented with enough groups

Compton scattering > absorption at high n

Lawrence Livermore National Laboratory LLNL-PRES-8214668 / 13

We are using IMC in our deflection calculations because they contain vacuum and point sources

Ā§ Diffusion has poor accuracy in vacuumā€¢ It also canā€™t simulate the directionality of a point source

Ā§ SN suffers from ray effects in vacuumā€¢ Canā€™t accurately model strongly peaked scattering like

Compton

Ā§ IMC can simulate point and ray sourcesā€¢ We have to incur and mitigate the drawbacks: ā€” Statistical noiseā€” Long runtimesā€” Use lots of zones and time steps

We must use lots of particles and processors

Lawrence Livermore National Laboratory LLNL-PRES-8214669 / 13

1D simulations simulate surface absorption, reemission, and momentum transfer

ā€¢ 1 sq. cm chunk ~ 60 cm deepā€¢ Source equivalent to 1 kiloton 85 m away

ā€¢ Spectrum = 1 keV Planckianā€¢ 200 groups in [3 x 10-3, 1000] keV log-spacedā€¢ Run to ~ 1e-4 sec

ā€¢ Dt in [10-16, 10-9] secā€¢ 2000 zones with Dx in [10-5,.4] cm ā€¢ 106 computational photonsā€¢ Materials = SiO2, Fe, H2O, Fosteriteā€¢ Simulations take ~ 1 Day on 144 2.1 MHz procsā€¢ Hydrodynamics is Lagrangian

ā€¢ Mesh moves with the materialIngoing shock

Ejected material

Energy escaping through asteroid surface Escaping spectrum

1 large vacuum zoneFine

ly z

oned

ast

eroi

d m

ater

ial Computational photons

are created moving parallel on vacuum face

r v

Te

Lawrence Livermore National Laboratory LLNL-PRES-82146610 / 13

2D simulations provide more realistic exploration of deposition as a function of angle

ā€¢ Ā½ of 35 m asteroid on an axisymmetric meshā€¢ Source is 1 kiloton, 85 m from surface

ā€¢ Spectrum = 1 keV Planckianā€¢ 200 groups in [3 x 10-3, 1000] keV log-spacedā€¢ 20719 zones; sizes in [10-6, 100] cmā€¢ 108 computational photonsā€¢ Materials = SiO2, Fe, H2O, Forsteriteā€¢ Simulations take ~ 1 Week on 144 2.1 MHz procsā€¢ Hydrodynamics is Lagrangian

ā€¢ Mesh moves with the material

Tr showing reradiated photons

Te of matter in asteroid surface

Reradiated photonsFrom asteroid

Source photons- The computational photons have exact positions on a spherical shell- The jaggedness is an artifact of the coarse vacuum zoning

Lawrence Livermore National Laboratory LLNL-PRES-82146611 / 13

Radiation hydrodynamics simulations using IMC will contribute to asteroid deflection modeling

Ā§ We are currently running radiation hydrodynamics calculations in 1 and 2D ā€¢ These expensive calculations model absorption and

reemission, shock physics, and asteroid momentum

Ā§ These simulations allow us to characterize energy deposition with relevant physics

Ā§ We are investigating whether we can use that deposition in hydro-only calculations and still obtain accurate results for momentum couplingā€¢ These simulations ignore radiation transport but are much

faster

Lawrence Livermore National Laboratory LLNL-PRES-82146612 / 13

A derivation of FLD with MMCEnergy conservation in lab frame:with , and

[See [2], Eqs.(6.31)ā€”(6.38)]

raTa0rad = g0L

<latexit sha1_base64="N1XWOCPLJNMIInThrFJVcLa3H3E=">AAACBnicbVA9SwNBEN3zM8avU0sRFoNgFe6ioI0QtLGwiJAvSC7H3GaTLNnbO3b3hHCksvGv2FgoYutvsPPfuEmu0MQHA4/3ZpiZF8ScKe0439bS8srq2npuI7+5tb2za+/t11WUSEJrJOKRbAagKGeC1jTTnDZjSSEMOG0Ew5uJ33igUrFIVPUopl4IfcF6jIA2km8ftQUEHHzAVT+V0B13UnDG+Ar3/buO49sFp+hMgReJm5ECylDx7a92NyJJSIUmHJRquU6svRSkZoTTcb6dKBoDGUKftgwVEFLlpdM3xvjEKF3ci6QpofFU/T2RQqjUKAxMZwh6oOa9ifif10p079JLmYgTTQWZLeolHOsITzLBXSYp0XxkCBDJzK2YDEAC0Sa5vAnBnX95kdRLRfesWLo/L5Svszhy6BAdo1PkogtURreogmqIoEf0jF7Rm/VkvVjv1sesdcnKZg7QH1ifP6aPl/E=</latexit>

g0L = g0F + vigiF

<latexit sha1_base64="Bj4lOeLyyKiVFd5rUiuOqbWjdn4=">AAACAnicbZBNS8MwGMfT+TbnW9WTeAkOQRBGOwW9CENBPHiY4F5gqyXN0i4sTUuSDkYZXvwqXjwo4tVP4c1vY9b1oJsPhPz4/5+H5Pl7MaNSWda3UVhYXFpeKa6W1tY3NrfM7Z2mjBKBSQNHLBJtD0nCKCcNRRUj7VgQFHqMtLzB1cRvDYmQNOL3ahQTJ0QBpz7FSGnJNfcC9/bBghcwcK/1fQyHLs2YumbZqlhZwXmwcyiDvOqu+dXtRTgJCVeYISk7thUrJ0VCUczIuNRNJIkRHqCAdDRyFBLppNkKY3iolR70I6EPVzBTf0+kKJRyFHq6M0SqL2e9ifif10mUf+6klMeJIhxPH/ITBlUEJ3nAHhUEKzbSgLCg+q8Q95FAWOnUSjoEe3bleWhWK/ZJpXp3Wq5d5nEUwT44AEfABmegBm5AHTQABo/gGbyCN+PJeDHejY9pa8HIZ3bBnzI+fwCRy5T8</latexit>

g0F = cļæ½aaT4 ļæ½ cļæ½aEF

<latexit sha1_base64="Zuizy7LZY2PmDim6fuUUSydYDy4=">AAACEnicbVDJSgNBEO2JW4zbqEcvjUHQg2EmBvQiBMXgMUI2SCZDTaeTNOlZ6O4RwpBv8OKvePGgiFdP3vwbO8shJj4oeLxXRVU9L+JMKsv6MVIrq2vrG+nNzNb2zu6euX9Qk2EsCK2SkIei4YGknAW0qpjitBEJCr7Had0b3I79+iMVkoVBRQ0j6vjQC1iXEVBacs2znltqW/gaE9ySrOeDCxhwpV3A5/PSnVtyzayVsybAy8SekSyaoeya361OSGKfBopwkLJpW5FyEhCKEU5HmVYsaQRkAD3a1DQAn0onmbw0wida6eBuKHQFCk/U+YkEfCmHvqc7fVB9ueiNxf+8Zqy6V07CgihWNCDTRd2YYxXicT64wwQlig81ASKYvhWTPgggSqeY0SHYiy8vk1o+Z1/k8g+FbPFmFkcaHaFjdIpsdImK6B6VURUR9IRe0Bt6N56NV+PD+Jy2pozZzCH6A+PrF086mr4=</latexit>

giF = ļæ½1

cļæ½tF

iF

<latexit sha1_base64="s1EkhaSsf/KggpPoEaNmZ8Wfpcw=">AAACDHicbVDLSsNAFJ3UV62vqks3g0VwY0mqoBuhKBSXFewDmhgm00k6dCYJMxOhhHyAG3/FjQtF3PoB7vwbJ20W2npg4HDOudy5x4sZlco0v43S0vLK6lp5vbKxubW9U93d68ooEZh0cMQi0feQJIyGpKOoYqQfC4K4x0jPG1/nfu+BCEmj8E5NYuJwFITUpxgpLbnVWuC27im8hCe2LxBOrSzFGbQlDThyFWzlrk6ZdXMKuEisgtRAgbZb/bKHEU44CRVmSMqBZcbKSZFQFDOSVexEkhjhMQrIQNMQcSKddHpMBo+0MoR+JPQLFZyqvydSxKWccE8nOVIjOe/l4n/eIFH+hZPSME4UCfFskZ8wqCKYNwOHVBCs2EQThAXVf4V4hHQpSvdX0SVY8ycvkm6jbp3WG7dnteZVUUcZHIBDcAwscA6a4Aa0QQdg8AiewSt4M56MF+Pd+JhFS0Yxsw/+wPj8AdLdmjg=</latexit>

EL = EF + 2vic2

FF,i ā‡” EF<latexit sha1_base64="d8hnp4LB7oQdjB0ZDJZvG0hJvTo=">AAACGHicbVDLSsNAFJ34rPUVdelmsAiCUpMo6EYoSosLFxXsA9oaJtNJO3TyYGZSLCGf4cZfceNCEbfd+TdO2iy09cDA4ZxzuXOPEzIqpGF8awuLS8srq7m1/PrG5ta2vrNbF0HEManhgAW86SBBGPVJTVLJSDPkBHkOIw1ncJP6jSHhggb+gxyFpOOhnk9dipFUkq2flu07eAXLdgUeQ6vtcoTjoU2TGD9aScWOKyc0gW0Uhjx4SlO2XjCKxgRwnpgZKYAMVVsft7sBjjziS8yQEC3TCGUnRlxSzEiSb0eChAgPUI+0FPWRR0QnnhyWwEOldKEbcPV8CSfq74kYeUKMPEclPST7YtZLxf+8ViTdy05M/TCSxMfTRW7EoAxg2hLsUk6wZCNFEOZU/RXiPlLlSNVlXpVgzp48T+pW0TwrWvfnhdJ1VkcO7IMDcARMcAFK4BZUQQ1g8AxewTv40F60N+1T+5pGF7RsZg/8gTb+AWDFnio=</latexit>

since we will drop 1

c

@FF

@t<latexit sha1_base64="h/AKc23GZSdbwYN85VWokUlS3SI=">AAACFXicbVDLSgMxFL1TX7W+Rl26CRbBhZSZKuiyKBSXFWwtdIaSSTNtaOZBkhHKMD/hxl9x40IRt4I7/8ZMO4i2HgicnPtIzvFizqSyrC+jtLS8srpWXq9sbG5t75i7ex0ZJYLQNol4JLoelpSzkLYVU5x2Y0Fx4HF6542v8vrdPRWSReGtmsTUDfAwZD4jWGmpb544vsAktbOUZGjGkRNjoRjmqNlvZunPTWV9s2rVrCnQIrELUoUCrb756QwikgQ0VIRjKXu2FSs3zRcSTrOKk0gaYzLGQ9rTNMQBlW46dZWhI60MkB8JfUKFpurviRQHUk4CT3cGWI3kfC0X/6v1EuVfuCkL40TRkMwe8hNtMEJ5RGjABCWKTzTBRDD9V0RGWEejdJAVHYI9b3mRdOo1+7RWvzmrNi6LOMpwAIdwDDacQwOuoQVtIPAAT/ACr8aj8Wy8Ge+z1pJRzOzDHxgf39R+nzw=</latexit> Express lab frame radiation

quantities in fluid frame to O(v/c) via Lorentz transformation [2] Eq.(6.30)

FL,i = FF,i + viEF + vjPF,ij +O(v

c)

<latexit sha1_base64="Xt5JxcXBch3xQ6uvUQJc8uuoLlE=">AAACKHicbZDLSsNAFIYn9VbrrerSzWARKkpJqqAbsSgWF4IV7AXaEibTSTvt5MLMpFBCHseNr+JGRJFufRInaRZaPTDw8f/ncOb8ls+okLo+1TILi0vLK9nV3Nr6xuZWfnunIbyAY1LHHvN4y0KCMOqSuqSSkZbPCXIsRprW6Dr2m2PCBfXcRznxSddBfZfaFCOpJDN/CWHVDO+OaQQvYqrGdATh2KTwxqwqHJtDWEuMYezcFzs2RzgcRyGODnNmvqCX9KTgXzBSKIC0amb+rdPzcOAQV2KGhGgbui+7IeKSYkaiXCcQxEd4hPqkrdBFDhHdMDk0ggdK6UHb4+q5Eibqz4kQOUJMHEt1OkgOxLwXi/957UDa592Qun4giYtni+yAQenBODXYo5xgySYKEOZU/RXiAVI5SJVtHIIxf/JfaJRLxkmp/HBaqFylcWTBHtgHRWCAM1ABt6AG6gCDJ/AC3sGH9qy9ap/adNaa0dKZXfCrtK9vyROiNw==</latexit>

IF =1

4ā‡”(cEF + āŒ¦F Ā· FF )

<latexit sha1_base64="j548qFBAcuCeJui8YzYo61KW/rs=">AAACK3icbZDJSgNBEIZ73I1b1KOXwiAoQphRQS+CKIqeVDAqZELo6dQkjT0L3TVCGPI+XnwVD3pwwavvYU/Mwa2g4eP/q6iuP0iVNOS6r87Q8Mjo2PjEZGlqemZ2rjy/cGmSTAusiUQl+jrgBpWMsUaSFF6nGnkUKLwKbg4K/+oWtZFJfEHdFBsRb8cylIKTlZrlfYCT5hHsgh9qLnKvl2+Bn8oe+ApDWgVxaN118E8jbHOLvmglBEcFadnuEKyVmuWKW3X7BX/BG0CFDeqsWX70W4nIIoxJKG5M3XNTauRckxQKeyU/M5hyccPbWLcY8whNI+/f2oMVq7QgTLR9MUFf/T6R88iYbhTYzohTx/z2CvE/r55RuNPIZZxmhLH4WhRmCiiBIjhoSY2CVNcCF1rav4LocBsa2XiLELzfJ/+Fy42qt1ndON+q7O0P4phgS2yZrTKPbbM9dszOWI0Jdsce2DN7ce6dJ+fNef9qHXIGM4vsRzkfn8Mjo78=</latexit>

assuming IF is weakly anisotropic

PF ij āŒ˜1

c

Z

4ā‡”IFāŒ¦iāŒ¦j dāŒ¦ ā‡” 1

3EF ļæ½ij

<latexit sha1_base64="XXZbeFT/VNXeVnBRYz85eHVSIAY=">AAACWHicbVFdaxQxFM2MrW3Xr2199OXiIvi0zLSF+lgsFn1yBbct7CxDJnNnmzaTxCRTXML0Rwo+6F/xxczugNp6IORw7j3cm5NCC25dkvyI4gcbmw+3tncGjx4/efpsuLt3ZlVjGE6ZEspcFNSi4BKnjjuBF9ogrQuB58X1SVc/v0FjuZKf3VLjvKYLySvOqAtSPlQAk9yfwi2/aiHDLw2/gawylPm09SxIXLrcH0KmeQsf8lPIPta4oDnv7yu4hXLNIaNaG/X1j/+ghXedpUThaO7DiEE+HCXjZAW4T9KejEiPST78lpWKNTVKxwS1dpYm2s09NY4zge0gayxqyq7pAmeBSlqjnftVMC28CkoJlTLhSAcr9W+Hp7W1y7oInTV1l/ZurRP/V5s1rnoz91zqxqFk60FVI8Ap6FKGkhtkTiwDoczwsCuwSxpiceEvuhDSu0++T872x+nBeP/T4ej4bR/HNnlBXpLXJCVH5Ji8JxMyJYx8J7+ijWgz+hmTeCveWbfGUe95Tv5BvPcbTBuyiA==</latexit>

1)

2)

3)

4) FF = ļæ½Lc 1

3ļæ½t

@EF

@xF,iā‡” ļæ½Lc 1

3ļæ½t

@EF

@xi<latexit sha1_base64="m/vSf89zGstthjC9NDB/rkXw6dk=">AAACinicrVFdT9swFHWy8dXxUeCRl6tVk3iAKinTAKFJaLBqD3sAiQJSU0U3rtNaOIllO4jKyo/hL+2Nf4PTVtoGPHIkS8fnftj33EQKrk0QPHn+h48Li0vLK41Pq2vrG83NrWtdlIqyHi1EoW4T1EzwnPUMN4LdSsUwSwS7Se7O6vjNPVOaF/mVmUg2yHCU85RTNE6Km4/QjbvwHfajDM2YorC/K6AQpQop2LCyBxBpPsowNtVMtZFEZTgK+Bl3q7+3h9h293jlslBKVTxA4z168iputoJ2MAW8JuGctMgcF3HzTzQsaJmx3FCBWvfDQJqBrVtSwapGVGomkd7hiPUdzTFjemCnVlbwxSlDSAvlTm5gqv5bYTHTepIlLrMeTr+M1eJbsX5p0qOB5bksDcvp7KG0FGAKqPcCQ64YNWLiCFLF3V+BjtF5Y9z2Gs6E8OXIr8l1px0etDuXX1unP+Z2LJMd8pnskpAcklPyi1yQHqHekrfvffMO/VW/4x/7J7NU35vXbJP/4J8/Az9NxGg=</latexit>

Flux ansatz in fluid frame andwith the flux limiter, used in term

@

@xF,i=

@

@xi+

vic2

@

@t<latexit sha1_base64="qQ5wjCLtRvQCakdq6LxWXE+LA2Y=">AAACXHicfVFbS8MwGE3r1F2cVgVffAkOQVBGOwV9EYaC+DjBXWCtI83SLSy9kKTDUfonfduLf0XTraBu6geBk/Odk+Q7cSNGhTTNuaZvFDa3toulcmWnurtn7B90RBhzTNo4ZCHvuUgQRgPSllQy0os4Qb7LSNed3Gf97pRwQcPgWc4i4vhoFFCPYiQVNTCE7XGEEztCXFLEYPoFXwfJwwVNU3gL/xPRFJ6XYS6Zqm2CXxrp3w6ZDoyaWTcXBdeBlYMayKs1MN7sYYhjnwQSMyRE3zIj6STZgZiRtGzHgkQIT9CI9BUMkE+EkyzCSeGpYobQC7lagYQL9rsjQb4QM99VSh/JsVjtZeRvvX4svRsnoUEUSxLg5UVerAYMYZY0HFJOsGQzBRDmVL0V4jFSsUj1H2UVgrU68jroNOrWZb3xdFVr3uVxFMExOAFnwALXoAkeQQu0AQZz8KEVtZL2rhf0il5dSnUt9xyCH6UffQKW3rbq</latexit>

L 2 [0, 1]<latexit sha1_base64="rnsyu/BJ4sSzsGRWrkcuF4/1MK8=">AAAB/nicbVDLSsNAFL3xWesrKq7cDBbBhZSkCrosunHhooJ9QBLKZDpph04mYWYilFDwV9y4UMSt3+HOv3HSdqGtBwYO59zLPXPClDOlHefbWlpeWV1bL22UN7e2d3btvf2WSjJJaJMkPJGdECvKmaBNzTSnnVRSHIectsPhTeG3H6lULBEPepTSIMZ9wSJGsDZS1z70Y6wHBPP8box8JpDnnLlB1644VWcCtEjcGanADI2u/eX3EpLFVGjCsVKe66Q6yLHUjHA6LvuZoikmQ9ynnqECx1QF+ST+GJ0YpYeiRJonNJqovzdyHCs1ikMzWYRV814h/ud5mY6ugpyJNNNUkOmhKONIJ6joAvWYpETzkSGYSGayIjLAEhNtGiubEtz5Ly+SVq3qnldr9xeV+vWsjhIcwTGcgguXUIdbaEATCOTwDK/wZj1ZL9a79TEdXbJmOwfwB9bnD8VilLM=</latexit>

Steps 1-5 finally yield the standard form of the diffusion equation with MMC

Eq.(11.9) in [2], Eq.(7.18) in [6]

@EL

@t+

@FL,i

@xi= cļæ½aaT

4 ļæ½ cļæ½aEF ļæ½ ļæ½tvicFF,i

<latexit sha1_base64="NZILEZMpGBNCm3yUvlQyKeFOuzw=">AAACeHicbVFNT9tAEF0bKGlKi9seuYxIEVQtkZ1Gai+VoiIiDhyoRAApdq3xZh1WrD+0u46ILP+G/rfe+kO4cGIdLJGGjrTSmzdvZmffRrngSrvuX8teW994sdl62X619frNtvP23YXKCknZiGYik1cRKiZ4ykaaa8GucskwiQS7jG6O6vrljEnFs/Rcz3MWJDhNecwpakOFzm8AP5ZISz9HqTkKOA5Pq6dMV/BpVTEMy9PPvFpS3Ya8gu9AwVd8mmCIgHD+qw+Hy9RxODREk+pm6Mx0lrSqZw7NzHbodNyuuwh4DrwGdEgTZ6Hzx59ktEhYqqlApcaem+ugrBejglVtv1AsR3qDUzY2MMWEqaBcGFfBnmEmEGfSnFTDgl3uKDFRap5ERpmgvlartZr8X21c6PhbUPI0LzRL6eNFcWHszKD+BZhwyagWcwOQSm52BXqNxhBt/qo2wVt98nNw0et6X7q9n/3O4EdjR4vskF1yQDzylQzICTkjI0LJnbVjfbD2rHsb7H3746PUtpqe9+SfsHsPoYq9YA==</latexit>

5) FF,i = ļæ½c1

3ļæ½

@E

@xi<latexit sha1_base64="snt+bgjt1IR6Of2LgGwimPz+J3s=">AAACKnicbZDLSsNAFIYnXmu9RV26GSyCCy1JK+hGqIrFZQV7gSaEyXTSDp1cmJmIJeR53PgqbrpQilsfxEkbUFt/GPj4zzkzc343YlRIw5hoS8srq2vrhY3i5tb2zq6+t98SYcwxaeKQhbzjIkEYDUhTUslIJ+IE+S4jbXd4m9XbT4QLGgaPchQR20f9gHoUI6ksR7+uO0n9lKbwCp5haHkcYZiYaVKFlqB9H6UzL7EixCVFDN6lP/zs0LTo6CWjbEwFF8HMoQRyNRx9bPVCHPskkJghIbqmEUk7ye7EjKRFKxYkQniI+qSrMEA+EXYyXTWFx8rpQS/k6gQSTt3fEwnyhRj5rur0kRyI+Vpm/lfrxtK7tBMaRLEkAZ495MUMyhBmucEe5QRLNlKAMKfqrxAPkIpGqnSzEMz5lRehVSmb1XLl4bxUu8njKIBDcAROgAkuQA3cgwZoAgxewBt4Bx/aqzbWJtrnrHVJy2cOwB9pX9+jT6ZA</latexit>

@FL,i

@xi<latexit sha1_base64="y6GziwJz0emNZvNjEn0O3fp1qco=">AAACDnicbVDLSsNAFJ34rPUVdelmsBRcSEmqoMuiIC5cVLAPaEKYTCft0MkkzEzEEvIFbvwVNy4UcevanX/jpA2orQcuHM65d+be48eMSmVZX8bC4tLyympprby+sbm1be7stmWUCExaOGKR6PpIEkY5aSmqGOnGgqDQZ6Tjjy5yv3NHhKQRv1XjmLghGnAaUIyUljyz6gQC4dSJkVAUMXjppddHNMt+lHuPZp5ZsWrWBHCe2AWpgAJNz/x0+hFOQsIVZkjKnm3Fyk3zJzEjWdlJJIkRHqEB6WnKUUikm07OyWBVK30YREIXV3Ci/p5IUSjlOPR1Z4jUUM56ufif10tUcOamlMeJIhxPPwoSBlUE82xgnwqCFRtrgrCgeleIh0jno3SCZR2CPXvyPGnXa/ZxrX5zUmmcF3GUwD44AIfABqegAa5AE7QABg/gCbyAV+PReDbejPdp64JRzOyBPzA+vgHUZJyZ</latexit>

Flux ansatz in fluid frame without the flux limiter, used in term ļæ½t

vicFF,i

<latexit sha1_base64="Yce7AcThNBRePIAUenpOFYtUjoI=">AAACB3icbVDLSsNAFJ3UV62vqEtBBovgQkpSBV0WheKygn1AU8JkOmmHzkzCzKRQQnZu/BU3LhRx6y+482+ctllo64ELh3Pu5d57gphRpR3n2yqsrK6tbxQ3S1vbO7t79v5BS0WJxKSJIxbJToAUYVSQpqaakU4sCeIBI+1gdDv122MiFY3Eg57EpMfRQNCQYqSN5NvHnqIDjnwNvVAinI59mqU4g3U/rZ/TzLfLTsWZAS4TNydlkKPh219eP8IJJ0JjhpTquk6seymSmmJGspKXKBIjPEID0jVUIE5UL539kcFTo/RhGElTQsOZ+nsiRVypCQ9MJ0d6qBa9qfif1010eN1LqYgTTQSeLwoTBnUEp6HAPpUEazYxBGFJza0QD5HJQ5voSiYEd/HlZdKqVtyLSvX+sly7yeMogiNwAs6AC65ADdyBBmgCDB7BM3gFb9aT9WK9Wx/z1oKVzxyCP7A+fwD2n5lc</latexit>

Inconsistent !

DE

Dtļæ½ @

@xiL 1

3ļæ½t

@E

@xi+

4

3E@vi@xi

= cļæ½aT 4 ļæ½ cļæ½aE<latexit sha1_base64="TQDTOxjiydpk5Mq/295fJcZGi6E=">AAACsnicbVFNa9wwEJXdr9T9yKY99jJ0KRRKt3ay0FwKoU2ghx5SyCah640Za+WNiPyBNA5djH5gr73130TedULidEDm8WbePPkprZQ0FIb/PP/Bw0ePn2w8DZ49f/Fyc7D16tiUteZiwktV6tMUjVCyEBOSpMRppQXmqRIn6cW3tn9yKbSRZXFEy0rMclwUMpMcyVHJ4A9AnGnkzT4cWPchGwB87Li4Qk0Slb1B8DuRFuIc6Zyjan7Y9SQ0kW12IDZykWNCtqdvV9/Z8CG4th07nYWDvuDSDfVMvwDvDADh6GzsbnlNJOg2JINhOApXBfdB1IEh6+owGfyN5yWvc1EQV2jMNAormjWtJ1fCBnFtRIX8Ahdi6mCBuTCzZhW5hXeOmUNWancKghV7W9FgbswyT91kG5bp91ryf71pTdnurJFFVZMo+NooqxVQCe37wVxqwUktHUCupbsr8HN04ZF75cCFEPV/+T443h5FO6Ptn+Ph3tcujg32hr1l71nEPrM99p0dsgnj3idv4p15iT/2f/no8/Wo73Wa1+xO+eoK28PSqA==</latexit>

Lawrence Livermore National Laboratory LLNL-PRES-82146613 / 13

Ā§ [1] Ā§ [2]Ā§ [3]Ā§ [4]Ā§ [5]Ā§ [6]

References

G.C. Pomraning, Equations of Radiation Hydrodynamics, in: D. ter Harr (Ed.), International Series of Monographs in Natural Philosophy, vol. 54, Pergamon, New York, 1973.

J.I. Castor, Radiation Hydrodynamics, Cambridge University Press, New York, 2007

J. R. Buchler, Radiation Transfer in the Fluid Frame, JQSRT 30 No.5 (1983) 395ā€“407.

R. B. Lowrie, D. Mihalas, J. E. Morel, Comoving-frame radiation transport for nonrelativistic fluid velocities, JQSRT 69 (2001) 291ā€“304.

Mihalas and Weibel-Mihalas, Foundations of Radiation Hydrodynamics, Oxford University Press, Oxford, 1984.

R.L. Bowers and J. R. Wilson, Numerical Modeling in Applied Physics and Astrophysics, Jones and Bartlett, Boston, 1991.