An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

25
An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Department of Signal and Systems Chalmers University of Thechnology May 2011 M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 1 / 21

Transcript of An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Page 1: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

An NLLS Based Sub-Nyquist Rate Spectrum Sensing for

Wideband Cognitive Radio

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg

Department of Signal and SystemsChalmers University of Thechnology

May 2011

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 1 / 21

Page 2: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Outline

Introduction

Problem Statement

Proposed Model

Comparison and Simulation

Summary

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 2 / 21

Page 3: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Introduction

Spectrum Sensing

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 3 / 21

Page 4: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Introduction

Spectrum Sensing

Narrowband

Energy Detection (ED), ...

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 3 / 21

Page 5: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Introduction

Spectrum Sensing

Narrowband

Energy Detection (ED), ...

Wideband

Challenge: High Sample Rate ADC

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 3 / 21

Page 6: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Problem Statement

Signal

Complex signal x(t)

Fourier X (f ), f ∈ [0,Bmax ]

Nyquist rate: Bmax = L× B

frequency[MHz]

Sp

ectr

um

0 Bmax

index L = 0, 1, ..., L − 1

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 4 / 21

Page 7: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Problem Statement Cont.

Active channel set b = [b1, b2, ..., bN ]

Example: b = [8, 16, 17, 18, 29, 30]

frequency[MHz]

Sp

ectr

um

0 8 16 24 32

Given B ,Bmax ,Ωmax = Nmax

Land x(t)

Find b and N ?at fsample < Bmax

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 5 / 21

Page 8: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Proposed Model

LLxi (m)x(t) Delayxdi 1

MΣxdx

∗d

R b

y(f )

Multicoset SamplerSample Correlation matrix

NLLS Estimator

favg = αBmax

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 6 / 21

Page 9: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Multicoset Sampler

Non-uniform sampling: xi (m) = x [(mL + ci )/Bmax ];m ∈ Z

0 5 10 15 20 25 30 35 40−3

−2

−1

0

1

2

3

time

x(t)

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 7 / 21

Page 10: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Multicoset Sampler

Sampling frequency: favg =(

pL

)

Bmax

Landau’s lower bound: Nmax < p ≪ L

Random sample pattern: ci ∈ L

x1(m)

x(t) x2(m)

xp(m)

t = (mL+ c1)/Bmax

t = (mL+ cp)/Bmax

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 8 / 21

Page 11: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Recall Model

LLxi (m)x(t) Delayxdi 1

MΣxdx

∗d

R b

y(f )

Multicoset SamplerSample Correlation matrix

NLLS Estimator

favg = αBmax

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 9 / 21

Page 12: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Configuration

Upsampling: factor L

Low pass filtering: [0,B ]

Delaying: with ci samples

Lxi (m)

Delayxci , y(f )

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 10 / 21

Page 13: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Frequency domain Model

Matrix form:

y(f ) = A(b)x(f ) + n(f ), f ∈ [0,B ]

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 11 / 21

Page 14: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Frequency domain Model

Matrix form:

y(f ) = A(b)x(f ) + n(f ), f ∈ [0,B ]

y(f ): Known vector of DFT of configured sequences

x(f ): Unknown vector of signal spectrum in the active channels

n(f ): Gaussian complex noise, N (0, σ2I)

A(b)(i , k) = B exp(

j2πcibkL

)

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 11 / 21

Page 15: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Recall Model

LLxi (m)x(t) Delayxdi 1

MΣxdx

∗d

R b

y(f )

Multicoset SamplerSample Correlation matrix

NLLS Estimator

favg = αBmax

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 12 / 21

Page 16: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Correlation Matrix

True matrix: R = E [y(f )y∗(f )]

Estimated in time domain using Parseval’s identity

R =

B∫

0

y(f )y∗(f )df =+∞∑

m=−∞

xci [m]x∗ci [m]

Reduce complexity, downsampling xdi (m) = xci [mL]

R =1

M

M∑

m=1

xd (m)x∗d (m)

Lxcixdi 1

MΣxdx

∗d

R

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 13 / 21

Page 17: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

NLLS Based Method

Recall model y(f ) = A(b)x(f ) + n(f ) ⇒ b ?

Minimizing the least square error J(b) = tr(Ip − A(b)A†(b))R

Detection threshold

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 14 / 21

Page 18: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

NLLS Based Method

Recall model y(f ) = A(b)x(f ) + n(f ) ⇒ b ?

Minimizing the least square error J(b) = tr(Ip − A(b)A†(b))R

Detection thresholdJmin = σ2(p − N)

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 14 / 21

Page 19: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

NLLS method

Sequential Forward NLLS Algorithm

Typical Example: p = 10,N = 6, σ2 = 1

1 2 3 4 5 64

6

8

10

12

14

16

18

J(bi )LSE

i

Jmin

(p − i)σ2

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 15 / 21

Page 20: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Comparison and Simulation

Signal: Bmax = 320MHz ,B = 10MHz ,Ωmax = 0.25

Multicoset sampler: L = 32, p = 10,M = 64favg =

(

pL

)

Bmax = 100MHz!!

0 80 160 240 320frequency[MHz]

Sp

ectr

um

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 16 / 21

Page 21: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Energy Detection Model

Conventional ED model

x(t) x(nT )

Uniform Sampler

fs = Bmax

Filter Bank

1M

|.|2

1M

|.|2

≷10 η

≷10 η

H0

H0

H1

H1

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 17 / 21

Page 22: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Numerical Results

Probability of detection

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α=0.3, NLLS

α=0.5, NLLSEDMUSIC

Pd

SNR, [dB ]

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 18 / 21

Page 23: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Numerical Results

Probability of false alarm

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 100

0.005

0.01

0.015

0.02

0.025

α=0.3, NLLS

α=0.5, NLLSEDMUSIC

Pf

SNR, [dB ]

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 19 / 21

Page 24: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Summary

Wideband Spectrum Sensing

MulticosetSampler

NLLS method

Comparison

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 20 / 21

Page 25: An NLLS Based Sub-Nyquist Rate Spectrum Sensing for Wideband Cognitive Radio

Thank you for your attention

M. R. Avendi, K. Haghighi, A. Panahi, M. Viberg Wideband Spectrum Sensing May 2011 21 / 21