Aircraft Equations of Motion - 2!

download Aircraft Equations of Motion - 2!

of 12

Transcript of Aircraft Equations of Motion - 2!

  • 8/8/2019 Aircraft Equations of Motion - 2!

    1/28

    Aircraft Equations of Motion - 2Robert Stengel, Aircraft Flight Dynamics, MAE 331,

    2014

    Copyright 2014 by Robert Stengel. All rights reserved. For educational use only.

    http://www.princeton.edu/~stengel/MAE331.html http://www.princeton.edu/~stengel/FlightDynamics.html 

    •  How is a rotating reference frame describedin an inertial reference frame? 

    •  Is the transformation singular? 

    •  What adjustments must be made toexpressions for forces and moments in anon-inertial frame? 

    •  How are the 6-DOF equations implementedin a computer? 

    •  Damping effects 

    Learning Objectives  

    Reading: Flight Dynamics 

    161-180

    1

    Euler Angle Rates 

    2

  • 8/8/2019 Aircraft Equations of Motion - 2!

    2/28

    Euler-Angle Ratesand Body-Axis Rates

    Body-axisangular ratevector(orthogonal)

    ! B   =

    !  x

    !  y

    !  z

    "

    #

    $$$$

    %

    &

    '''' B

    =

     p

    q

    r

    "

    #

    $$$

    %

    &

    '''

    Euler-anglerate vector 

    Form a non-orthogonal vectorof Euler angles 

    ! =

    %

    &

    '''

    (

    )

    ***

     

    !! =!" 

    !# 

    !$ 

    %

    &

    '''

    (

    )

    ***+

    ,  x

    ,  y

    ,  z

    %

    &

    ''''

    (

    )

    **** I 

    3

    Relationship Between Euler-AngleRates and Body-Axis Rates

    •  is measured in the Inertial Frame 

    •  is measured in Intermediate Frame #1 

    •  is measured in Intermediate Frame #2 

    •  Inverse transformation [(.)-1 # (.)T] 

    "̇  

    "̇  

    "̇    p

    q

    r

    !

    "

    ###

    $

    %

    &&&= I

    3

    !' 

    0

    0

    !

    "

    ###

    $

    %

    &&&+H

    2

     B

    0

    !( 

    0

    !

    "

    ###

    $

    %

    &&&+H

    2

     BH

    1

    2

    0

    0

    !) 

    !

    "

    ###

    $

    %

    &&&

     

     p

    q

    r

    !

    "

    ###

    $

    %

    &&&=

    1 0   'sin( 0 cos)    sin) cos( 

    0   'sin)    cos) cos( 

    !

    "

    ###

    $

    %

    &&&

    !) !( 

    !* 

    !

    "

    ###

    $

    %

    &&&=L I 

     B !+

     

    !! 

    !" 

    !# 

    $

    %

    &&&

    '

    (

    )))=

    1 sin! tan"    cos! tan" 

    0 cos!    *sin! 

    0 sin! sec"    cos! sec" 

    $

    %

    &&&

    '

    (

    )))

     p

    q

    r

    $

    %

    &&&

    '

    (

    )))=L

     B

     I  + B

      Can the inversionbecome singular? 

    What does this mean? 

    •  ... which is 

    4

  • 8/8/2019 Aircraft Equations of Motion - 2!

    3/28

    Euler-Angle Rates and Body-Axis Rates

    5

    Avoiding the Singularity at "  = ±90°!

      Don’t use Euler angles as primarydefinition of angular attitude  

    !  Alternatives to Euler angles 

    -  Direction cosine (rotation) matrix  

    -  Quaternions 

    Propagation of rotation matrix(9 parameters) -  From previous lecture  

    !H B

     I h

     B  =   "!

     I H

     B

     I h

     B

     

    !H I  B

    t ( ) = ! "" B   t ( )H I  B

    t ( ) = !

    0   !r t ( )   q t ( )

    r t ( )   0   ! p t ( )

    !q t ( )   p t ( )   0   t ( )

    #

    $

    %%%%

    &

    '

    ((((

     B

    H I  B

    t ( )

    Consequently 

    6H I 

     B0( ) =H

     I 

     B ! 0," 

    0,# 

    0( )

  • 8/8/2019 Aircraft Equations of Motion - 2!

    4/28

    Avoiding the Singularity at "  = ±90°

    !  Propagation of quaternion vector  

    o  see Flight Dynamics  for details 

    e1

    e2

    e3

    e4

    !

    "

    #####

    $

    %

    &&&&&

    =

    Rotation angle, rad x-component of rotation axis

     y-component of rotation axis

     z-component of rotation axis

    !

    "

    #####

    $

    %

    &&&&&

    !  Quaternion vector: single rotation from

    inertial to body frame (4 parameters) 

    !

    e   t ( )=

    !e1

      t ( )

    !e2

      t ( )

    !e3   t ( )

    !e4

      t ( )

    !

    "

    ##

    ####

    $

    %

    &&

    &&&&

    =

    0   'r t ( )   'q t ( )   ' p t ( )

    r t ( )   0   ' p t ( )   q t ( )

    q t ( )   p t ( )   0   'r t ( )

     p t ( )   'q t ( )   r t ( )   0

    !

    "

    ##

    ####

    $

    %

    &&

    &&&&

    e1

      t ( )

    e2

      t ( )

    e3

      t ( )

    e4

      t ( )

    !

    "

    ##

    ####

    $

    %

    &&

    &&&&

    =

    Q   t ( )e   t ( );   e   0( )=

    e   ( 0,) 0 ,* 0( )

    7

    Rigid-BodyEquations of Motion 

    8

  • 8/8/2019 Aircraft Equations of Motion - 2!

    5/28

    Point-MassDynamics

    •  Inertial rate of change of translational position  

    •  Body-axis rate of change of translational velocity  –

     

    Identical to angular-momentum transformation 

    !r I   =  v

     I   =  H

     B

     I v

     B

     

    !v I   =

    1

    mF I 

    !v B

      =  H I 

     B!v I 

      !   "" B

    v B

      =

    1

    mH

     I 

     BF I 

      !   "" B

    v B

    =

    1

    mF B  !   ""

     Bv B

    F B

      =

     X 

    Y  Z 

    !

    "

    #

    ##

    $

    %

    &

    && B

    =

    C  X qS 

    C Y 

    qS 

    C  Z qS 

    !

    "

    ###

    $

    %

    &&&

    v B  =

    u

    v

    w

    !

    "

    ###

    $

    %

    &&&

    9

     

    !r I   t ( ) =H B

     I t ( )v B   t ( )

     

    !v B

      t ( ) =1

    m t ( )F

     B  t ( )+H I 

     Bt ( )g I   ! "" B   t ( )v B   t ( )

     

    !! I   t ( ) =L B

     I t ( )" B   t ( )

     

    !! B  t ( ) = I  B

    "1t ( )  M B   t ( )"  "! B   t ( ) I  B   t ( )! B   t ( )#$   %&

    •  Rate of change ofTranslational Position

    •  Rate of change ofAngular Position

    •  Rate of change ofTranslational Velocity

    •  Rate of change ofAngular Velocity

    r I   =

     x

     y

     z

    !

    "

    ###

    $

    %

    &&& I 

    ! I   =

    %

    &

    '''

    (

    )

    ***

     I 

    v B  =

    u

    v

    w

    !

    "

    ###

    $

    %

    &&& B

    ! B   =

     p

    q

    r

    "

    #

    $$$

    %

    &

    ''' B

    •  TranslationalPosition

    •  AngularPosition

    •  TranslationalVelocity 

    •  AngularVelocity

    Rigid-Body Equations of Motion(Euler Angles)

    10

  • 8/8/2019 Aircraft Equations of Motion - 2!

    6/28

    Aircraft CharacteristicsExpressed in Body Frame

    of Reference

     I  B   =

     I  xx   ! I  xy   ! I  xz

    ! I  xy   I  yy   ! I  yz

    ! I  xz   ! I  yz   I  zz

    "

    #

    $$$$

    %

    &

    '''' B

    F B   =

     X aero  + X thrust 

    Y aero  +Y thrust 

     Z aero  + Z thrust 

    !

    "

    ###

    $

    %

    &&& B

    =

    C  X aero +C  X thrust 

    C Y aero +C Y thrust 

    C  Z aero +C  Z thrust 

    !

    "

    ####

    $

    %

    &&&& B

    1

    2' V 

    2S  =

    C  X 

    C Y 

    C  Z 

    !

    "

    ###

    $

    %

    &&& B

    q S Aerodynamicand thrustforce

    Aerodynamic andthrust moment 

    Inertiamatrix

    Reference Lengths

    b   = wing span

    c   = mean aerodynamic chord 

    M B   =

     Laero  + Lthrust 

     M aero  + M thrust 

     N aero  + N thrust 

    !

    "

    ###

    $

    %

    &&& B

    =

    C laero +C lthrust ( )b

    C maero +C mthrust ( )c

    C naero

    +C nthrust ( )b

    !

    "

    #####

    $

    %

    &&&&& B

    1

    2' V 

    2S  =

    C lb

    C mc

    C nb

    !

    "

    ###

    $

    %

    &&& B

    q S 

    11

    Rigid-Body Equations of Motion:Position

     

    ! x I    =   cos! cos" ( )u  +   #cos$ sin"   + sin$ sin! cos" ( )v +   sin$ sin"   +  cos$ sin! cos" ( )w

    ! y I    =   cos! sin" ( )u  +   cos$ cos"   + sin$ sin! sin" ( )v +   #sin$ cos"   + cos$ sin! sin" ( )w

    ! z I    =   # sin! ( )u  +   sin$ cos! ( )v +   cos$ cos! ( )w

     

    !!   =   p +   qsin!  +  r cos! ( ) tan" !"   =  qcos!  #  r sin! 

    !$   =   qsin!  + r cos! ( )sec" 

    •  Rate of change of Translational Position 

    •  Rate of change of Angular Position

    12

  • 8/8/2019 Aircraft Equations of Motion - 2!

    7/28

    Rigid-Body Equations of Motion:Rate

     

    !u  = X  / m

    !

    gsin" + rv!

    qw

    !v =Y   /m+ gsin# cos"  ! ru+ pw

    !w = Z  /m+ gcos# cos" +qu! pv

     

    ! p =   I  zz L+ I  xz N  !   I  xz   I  yy ! I  xx ! I  zz( ) p+   I  xz2 + I  zz   I  zz ! I  yy( )"#   $%r{ }q( )   I  xx I  zz ! I  xz2( )

    !q =1

     I  yy

     M  !   I  xx ! I  zz( ) pr ! I  xz   p2 ! r2( )"#   $%

    !r  =   I  xz L+ I  xx N  !   I  xz   I  yy ! I  xx ! I  zz( )r+   I  xz2 + I  xx   I  xx ! I  yy( )"#   $% p{ }q( )   I  xx I  zz ! I  xz2( )

    •  Rate of change of Translational Velocity

    •  Rate of change of Angular Velocity 

    Mirror symmetry, I xz  #  0 13

    FLIGHT -Computer Program to

    Solve the 6-DOFEquations of Motion 

    14

  • 8/8/2019 Aircraft Equations of Motion - 2!

    8/28

    http://www.princeton.edu/~stengel/FlightDynamics.html  

    FLIGHT - MATLAB Program

    15

    http://www.princeton.edu/~stengel/FlightDynamics.html  

    FLIGHT - MATLAB Program

    16

  • 8/8/2019 Aircraft Equations of Motion - 2!

    9/28

    Examples from FLIGHT 

    17

    Longitudinal TransientResponse to Initial Pitch Rate

    Bizjet, M = 0.3, Altitude = 3,052 m  

    •  For a symmetric aircraft, longitudinalperturbations do not induce lateral-directional motions

    18

  • 8/8/2019 Aircraft Equations of Motion - 2!

    10/28

    Transient Responseto Initial Roll Rate 

    Lateral-Directional Response  Longitudinal Response 

    Bizjet, M = 0.3, Altitude = 3,052 m   •  For a symmetric aircraft, lateral-directional perturbations do induce longitudinal motions

    19

    Transient Response toInitial Yaw Rate

    Lateral-Directional Response  Longitudinal Response 

    Bizjet, M = 0.3, Altitude = 3,052 m  

    20

  • 8/8/2019 Aircraft Equations of Motion - 2!

    11/28

    Crossplot of TransientResponse to Initial Yaw Rate

    Bizjet, M = 0.3, Altitude = 3,052 m  

    Longitudinal-Lateral-Directional Coupling 

    21

    Aerodynamic Damping 

    22

  • 8/8/2019 Aircraft Equations of Motion - 2!

    12/28

    Pitching Moment due to Pitch Rate

     M  B  = C 

    mq Sc !   C 

    mo+C 

    mqq +C 

    m" 

    " ( )q Sc

    !   C mo +#C 

    m

    #qq +C 

    m" 

    " $ 

    % &

    ( )  q Sc

    23

    Angle of Attack DistributionDue to Pitch Rate

    •  Aircraft pitching at a constant rate, q  rad/s, produces anormal velocity distribution along x  

    !w   =  "q! x

    !"   =!w

    V =

    #q! x

    •  Corresponding angle of attack distribution  

    !" ht    =qlht 

    •  Angle of attack perturbation at tail center of pressure 

    lht  = horizontal tail distance from c.m.

    24

  • 8/8/2019 Aircraft Equations of Motion - 2!

    13/28

    Horizontal Tail LiftDue to Pitch Rate  

    •  Incremental tail lift due to pitch rate, referenced to tail area, S ht  

    •  Lift coefficient sensitivity to pitch rate referenced to wing area 

    ! Lht   =   !C 

     Lht ( )

    ht 

    1

    2" V 

    2S ht 

    C  Lqht !"  #C  Lht ( )aircraft 

    " q=

    " C  Lht 

    "$ 

    % & '

    ( ) * 

    aircraft 

    lht 

    % & '

      ( ) * 

    !C  Lht ( )aircraft  =   !C  Lht ( )ht S ht 

    " # $

      % & '   =

    ( C  Lht () 

    " # $

    % & ' 

    aircraft 

    !) *

    +,,

    -

    .//=

    ( C  Lht () 

    " # $

    % & ' 

    aircraft 

    qlht 

    " # $

      % & ' 

    •  Incremental tail lift coefficient due to pitch rate,referenced to wing area, S  

    25

    Moment CoefficientSensitivity to Pitch Rate of

    the Horizontal Tail

    •  Differential pitch moment due to pitch rate  

    ! " M ht ! q

    = C mqht 

    1

    2# V 2Sc   = $C  Lqht 

    lht 

    % & '

      ( ) *  1

    2# V 2Sc

    = $  ! C  Lht 

    !+ 

    % & '

    ( ) * aircraft 

    lht 

    % & '

      ( ) * 

    ,

    -..

    /

    011

    lht 

    c

    % & '

      ( ) *  1

    2# V 2Sc

    C mqht = !

    " C  Lht 

    "# 

    lht 

    $ % &

      ' ( )   lht 

    c

    $ % &

      ' ( )   = !

    " C  Lht 

    "# 

    lht 

    c

    $ % &

      ' ( ) 2

    c

    $ % &  ' ( ) 

    •  Coefficient derivative with respect to pitch rate  

    •  Coefficient derivative with respect to normalized pitch rate isinsensitive to velocity 

    C m q̂ht =

    ! C mht 

    !  q̂=

    ! C mht 

    !   qc

    2V ( )  = "2

    ! C  Lht 

    !# 

    lht 

    c

    $ % &

      ' ( ) 

    2

    26

  • 8/8/2019 Aircraft Equations of Motion - 2!

    14/28

  • 8/8/2019 Aircraft Equations of Motion - 2!

    15/28

    Roll Damping Dueto Roll Rate

     

    Tapered vertical tail 

    •  Tapered horizontal tail 

     ˆ p  = pb

    2V 

    C l ˆ p( )ht  =!   "C l( )ht 

    !   ˆ p= #

    C  L$ ht 

    12

    S ht 

    %

    &'

    (

    )*  1+ 3+ 

    1++ 

    %

    &'

    (

    )*

    • 

    pb/2V  describes helixangle for a steady roll  

    C l  ˆ p( )vt  =!   "C l( )vt 

    !   ˆ p= #

    C Y $ vt 

    12

    S vt 

    %

    &'

    (

    )*  1+ 3+ 

    1++ 

    %

    &'

    (

    )*

    29

    Yaw Damping Due to Yaw Rate

    C nr

    ! V 2

    2

    " # $

    % & '  Sb  = C 

    n r̂

    b

    2V 

    " # $

      % & ' 

      ! V 2

    2

    " # $

    % & '  Sb

    = C n r̂

    ! V 

    4

    # $

      % 

    & '  Sb

    2

    < 0 for stability  

    30

     r̂   =rb

    2V 

  • 8/8/2019 Aircraft Equations of Motion - 2!

    16/28

    Yaw Damping Dueto Yaw Rate 

    C n  r̂ !   C n  r̂( )Vertical Tail +   C n  r̂( )Wing

    C n r̂( )Wing = k 0C  L2

    + k 1C  DParasite,Wing

    k 0  and k 1 are functions ofaspect ratio and sweep angle  

    •  Wing contribution 

    •  Vertical tail contribution 

    !   C n( )Vertical Tail   = "   C n# ( )

    Vertical Tail

    rlvt 

    V ( ) = "   C n# ( )Vertical Taill

    vt 

    b

    $ % &

      ' ( ) 

      b

    $ % &  ' ( ) 

     r

     r̂   =rb

    2V 

    C n r̂

    ( )vt 

    =

    ! "   C n( )Vertical Tail

    !   rb2V ( )

      =

    ! "   C n( )Vertical Tail!  r̂

    = #2   C n$ ( )

    Vertical Tail

    lvt 

    b

    % & '

      ( ) * 

    NACA-TR-1098, 1952  NACA-TR-1052, 1951 31

    Next Time: Aircraft Control Devices and

    Systems 

    Reading: Flight Dynamics 

    214-234

    32

  • 8/8/2019 Aircraft Equations of Motion - 2!

    17/28

    Supplemental

    Material 

    33

     Airplane Angular Attitude (Position)

    •  Euler angles•  3 angles that relate one

    Cartesian coordinate frame toanother 

    •  defined by sequence of 3rotations about individual axes

    • 

    intuitive description of angularattitude 

    •  Euler angle rates have anonlinear relationship to body-axis angular rate vector  

    •  Transformation of rates issingular at 2 orientations, ±90° 

    ! ," ,# ( )

    34

  • 8/8/2019 Aircraft Equations of Motion - 2!

    18/28

     Airplane Angular Attitude (Position)

    H I 

     B(! ," ,# ) =

    h11

      h12

      h13

    h21   h22   h23

    h31   h32   h33

    $

    %

    &&&

    '

    (

    ))) I 

     B

    H I 

     B(! ," ,# ) = H

    2

     B(! )H

    1

    2(" )H

     I 

    1(# )

    H I 

     B(! ," ,# )$%   '(

    *1=   H

     I 

     B(! ," ,# )$%   '(

    = H B

     I (# ," ,! )

    •  Rotation matrix

    •  orthonormal transformation 

    •  inverse = transpose 

    •  linear propagation from one attitude toanother, based on body-axis rate vector  

    • 

    9 parameters, 9 equations to solve  

    •  solution for Euler angles from parametersis intricate 

    35

     Airplane Angular Attitude (Position)

    H I 

     B(! ," ,# ) = H

    2

     B(! )H

    1

    2(" )H

     I 

    1(# )

    H I 

     B(! ," ,# ) =

    1 0 0

    0 cos!    sin! 

    0   $sin!    cos! 

    %

    &

    '''

    (

    )

    ***

    cos"    0   $sin" 

    0 1 0

    sin"    0 cos" 

    %

    &

    '''

    (

    )

    ***

    cos#    sin#    0

    $sin#    cos#    0

    0 0 1

    %

    &

    '''

    (

    )

    ***

    H I 

     B(! ," ,# ) =

    cos" cos#    cos" sin#    $sin" 

    $cos! sin#   + sin! sin" cos#    cos! cos#   + sin! sin" sin#    sin! cos" 

    sin! sin#   + cos! sin" cos#    $sin! cos#   + cos! sin" sin#    cos! cos" 

    %

    &

    '''

    (

    )

    ***

     Rotation Matrix 

    H I 

     BH

     B

     I =  I  for all (! ," ,# ), i.e., No Singularities   36

  • 8/8/2019 Aircraft Equations of Motion - 2!

    19/28

    Angles betweeneach I  axis and each

    B  axis

     Airplane Angular Attitude (Position)

     Rotation Matrix = Direction Cosine Matrix 

    H I 

     B=

    cos! 11

      cos! 21

      cos! 31

    cos! 12

      cos! 22

      cos! 32

    cos! 13

      cos! 23

      cos! 33

    "

    #

    $$

    $

    %

    &

    ''

    '

    37

     Airplane Angular Attitude (Position)

    e1

    e2

    e3

    e4

    !

    "

    #####

    $

    %

    &&&&&

    =

    Rotation angle, rad

     x-component of rotation axis

     y-component of rotation axis

     z-component of rotation axis

    !

    "

    #####

    $

    %

    &&&&&

    Quaternion vector!

     

    single rotation from inertial to body frame  

    non-singular, linear propagation of attitude based on body-axis rate vector  

    4 parameters; more compact than the rotation matrix  

    solution for rotation matrix and Euler angles fromparameters is intricate 

    38

  • 8/8/2019 Aircraft Equations of Motion - 2!

    20/28

     Airplane Angular Attitude (Position)

     Rotation Matrix from Quaternion Vector  

    H I 

     B=

    e1

    2 ! e2

    2 ! e3

    2+ e

    4

    22   e

    1e2 + e

    3e4( )   2   e2e4 !  e1e3( )

    2   e3e4 !  e

    1e2( )   e1

    2 ! e2

    2+ e

    3

    2+ e

    4

    22   e

    2e3 + e

    1e4( )

    2   e1e3 + e

    2e4( )   2   e2e3 !  e1e4( )   e1

    2+ e

    2

    2 ! e3

    2+ e

    4

    2

    "

    #

    $$$$

    %

    &

    ''''

     Euler Angles from Quaternion:

    see p. 186, Flight Dynamics 39

     Euler Angle Dynamics

     

    !! =

    !" 

    !# 

    !$ 

    %

    &

    '''

    (

    )

    ***=

    1 sin" tan#    cos" tan# 

    0 cos"    +sin" 

    0 sin" sec#    cos" sec# 

    %

    &

    '''

    (

    )

    ***

     p

    q

    r

    %

    &

    '''

    (

    )

    ***

    = L B I  , B

    L B I   is not orthonormal

    L B

     I  is singular when ! = ± 90°

    40

  • 8/8/2019 Aircraft Equations of Motion - 2!

    21/28

  • 8/8/2019 Aircraft Equations of Motion - 2!

    22/28

     

    !r I 

      =  H B

     I v

     B

     

    !v B  =

    1

    mF B + H

     I 

     Bg I   !   ""

     Bv B

     

    !! B

      =   I  B

    "1M

     B

     "   "! B

     I  B

    ! B( )

     Rigid-Body Equations of Motion

    (Attitude from 9-Element Rotation Matrix)

     

    !H I 

     B= ! ""

     BH

     I 

     B

    No need for Euler angles to solve the dynamic equations  43

    Quaternion Vector Dynamics

     

    !e   t ( ) =

    !e1

      t ( )

    !e2

      t ( )

    !e3

      t ( )

    !e4

      t ( )

    !

    "

    ######

    $

    %

    &&&&&&

    =Q   t ( )e   t ( )

    =

    0   'r t ( )   'q t ( )   ' p t ( )

    r t ( )   0   ' p t ( )   q t ( )

    q t ( )   p t ( )   0   'r t ( )

     p t ( )   'q t ( )   r t ( )   0

    !

    "

    ######

    $

    %

    &&&&&&

    e1

      t ( )

    e2

      t ( )

    e3

      t ( )

    e4

      t ( )

    !

    "

    ######

    $

    %

    &&&&&&

    44

  • 8/8/2019 Aircraft Equations of Motion - 2!

    23/28

     

    !r I   =  H

     B

     I v

     B

     

    !v B  =

    1

    mF B  + H

     I 

     Bg I   !   ""

     Bv B

     

    !!  B   =   I  B"1M

     B  "   "!  B I  B!  B( )

     Rigid-Body Equations of Motion(Attitude from 4-Element Quaternion Vector)

     

    !e  =Qe   H B

     I , H

     I 

     B are functions of e

    45

    Alternative ReferenceFrames 

    46

  • 8/8/2019 Aircraft Equations of Motion - 2!

    24/28

    Velocity Orientation in an InertialFrame of Reference

    Polar Coordinates  Projected on a Sphere  

    47

    Body Orientation with Respectto an Inertial Frame

    48

  • 8/8/2019 Aircraft Equations of Motion - 2!

    25/28

    Relationship of Inertial Axesto Body Axes

    • 

    Transformation isindependent ofvelocity vector 

    •  Represented by 

     –  Euler angles 

     –  Rotation matrix 

    v x

    v y

    v z

    !

    "

    ##

    ##

    $

    %

    &&

    &&

    = H B I 

    u

    v

    w

    !

    "

    ###

    $

    %

    &&&

    u

    v

    w

    !

    "

    ###

    $

    %

    &&&

    = H I  B

    v x

    v y

    v z

    !

    "

    ####

    $

    %

    &&&&

    49

    Velocity-Vector Componentsof an Aircraft

    V , ! , " 

    V , ! ," 

    50

  • 8/8/2019 Aircraft Equations of Motion - 2!

    26/28

    Velocity Orientation with Respectto the Body Frame

    Polar Coordinates  Projected on a Sphere  

    51

    •  No reference to the bodyframe 

    •  Bank angle, % , is roll angleabout the velocity vector

    #

    $

    %%%

    &

    '

    (((

    =

    v x2+ v y

    2+ v z

    2

    sin)1

    v y  /   v

     x

    2+ v

     y

    2( )1/2#

    $&'

    sin)1 )v

     z  /V ( )

    #

    $

    %%%%%

    &

    '

    (((((

    v x

    v y

    v z

    !

    "

    #

    ###

    $

    %

    &

    &&& I 

    =

    V  cos'   cos( 

    V  cos'  sin( 

    )V  sin' 

    !

    "

    #

    ##

    $

    %

    &

    &&

    Relationship of Inertial Axesto Velocity Axes

    52

  • 8/8/2019 Aircraft Equations of Motion - 2!

    27/28

    Relationship of Body Axes to Wind Axes

    •  No reference tothe inertial frame

    u

    v

    w

    !

    "

    #

    ##

    $

    %

    &

    &&

    =

    V  cos' cos( 

    V  sin( 

    V  sin' cos( 

    !

    "

    #

    ##

    $

    %

    &

    &&

    ! " 

    #

    $

    %

    %%

    &

    '

    (

    ((

    =

    u2+ v

    2+ w

    2

    sin)1

    v /V 

    ( )tan

    )1w / u( )

    #

    $

    %%%%

    &

    '

    ((((

    53

    Angles Projectedon the Unit Sphere

     

    "  : angle of attack 

    #  : sideslip angle

    $  : vertical flight path angle

    %  : horizontal flight path angle

    &  : yaw angle

    '  :  pitch angle

    (  : roll angle (about body x ) axis)

    µ : bank angle (about velocity vector)

    •  Origin isairplanes center

    of mass 

    54

  • 8/8/2019 Aircraft Equations of Motion - 2!

    28/28

    Alternative Frames of Reference•  Orthonormal transformations connect all reference frames 

    55