adiabatic formalism

156
The Adiabatic Connection: Generating DFT Functionals from Coupled-Cluster Theory Andrew M. Teale CMA-CTCC workshop on computational quantum mechanics 13th January 2009 1/28

Transcript of adiabatic formalism

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 1/156

The Adiabatic Connection:Generating DFT Functionals fromCoupled-Cluster Theory

Andrew M. Teale

CMA-CTCC workshop on computationalquantum mechanics

13th January 2009

1 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 2/156

Wavefunction and DFT Approaches to the ElectronicStructure Problem

Wavefunction methods offer a systematic route to theapproximate solution of the electronic Schrodinger Equation

2 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 3/156

Wavefunction and DFT Approaches to the ElectronicStructure Problem

Wavefunction methods offer a systematic route to theapproximate solution of the electronic Schrodinger Equation

This means that in principle arbitrary accuracy can beachieved, CCSD, CCSD(T), CCSDT, CCSDTQ, CCSDTQ5 ...

with good control of errors.

2 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 4/156

Wavefunction and DFT Approaches to the ElectronicStructure Problem

Wavefunction methods offer a systematic route to theapproximate solution of the electronic Schrodinger Equation

This means that in principle arbitrary accuracy can beachieved, CCSD, CCSD(T), CCSDT, CCSDTQ, CCSDTQ5 ...

with good control of errors.But they are expensive and have unfavourable scaling of thecost with system size N 6, N 7,N 8 ...

2 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 5/156

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 6/156

Wavefunction and DFT Approaches to the ElectronicStructure Problem

Wavefunction methods offer a systematic route to theapproximate solution of the electronic Schrodinger Equation

This means that in principle arbitrary accuracy can beachieved, CCSD, CCSD(T), CCSDT, CCSDTQ, CCSDTQ5 ...

with good control of errors.But they are expensive and have unfavourable scaling of thecost with system size N 6, N 7,N 8 ...

Density Functional Theory promises a way to circumvent this

problem - use simple model system with same electronicdensity

BUT, the model Hamiltonian associated with DFT contains acontribution whose form is unknown - must be approximated.

2 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 7/156

Wavefunction and DFT Approaches to the ElectronicStructure Problem

The main disadvantage of DFT is that there is no systematicroute to the determination of this unknown contribution andso the accuracy achieved is not easily controlled and can varyfrom problem to problem

3 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 8/156

Wavefunction and DFT Approaches to the ElectronicStructure Problem

The main disadvantage of DFT is that there is no systematicroute to the determination of this unknown contribution andso the accuracy achieved is not easily controlled and can varyfrom problem to problem

In a sense WFT and DFT are complementary - one hassystematic control of errors but high cost, the other has lowcost but uncontrolled errors.

3 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 9/156

Wavefunction and DFT Approaches to the ElectronicStructure Problem

The main disadvantage of DFT is that there is no systematicroute to the determination of this unknown contribution andso the accuracy achieved is not easily controlled and can varyfrom problem to problem

In a sense WFT and DFT are complementary - one hassystematic control of errors but high cost, the other has lowcost but uncontrolled errors.

In this talk we will examine the link between the two

approaches.

3 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 10/156

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 11/156

The Generalized Lieb Formulation of DFTConsider a generalized Hamiltonian of the form

H λ[v ] = T + λW  + i 

v (ri ) = −1

2

2

+ λi > j 

1

r ij 

+ i 

v (ri )

the electronic interaction strength can be varied with theparameter λ

4 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 12/156

The Generalized Lieb Formulation of DFTConsider a generalized Hamiltonian of the form

H λ[v ] = T + λW  + i 

v (ri ) = −1

2

2

+ λi > j 

1

r ij 

+ i 

v (ri )

the electronic interaction strength can be varied with theparameter λThe ground state energy for an external potential v  is

E λ[v ] = inf γ →N 

Tr H λ[v ]γ 

where the minimization is over all ensemble density matrices γ containing N  electrons

4 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 13/156

The Generalized Lieb Formulation of DFTConsider a generalized Hamiltonian of the form

H λ[v ] = T + λW  + i 

v (ri ) = −1

2

2

+ λi > j 

1

r ij 

+ i 

v (ri )

the electronic interaction strength can be varied with theparameter λThe ground state energy for an external potential v  is

E λ[v ] = inf γ →N 

Tr H λ[v ]γ 

where the minimization is over all ensemble density matrices γ containing N  electronsLieb established the mutual Legendre-Fenchel transforms for

the energy and universal functional

F λ[ρ] = supv ∈X ∗

E λ[v ]−

 ρ(r)v (r) dr

E λ[v ] = inf ρ∈X F λ[ρ] +

 ρ(r)v (

r)dr

4 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 14/156

The Lieb Formulation of DFT

The relationships between these conjugate functionals are the

Fenchel inequalities

F λ[ρ] ≥ E λ[v ]−

 ρ(r)v (r) dr

E λ[v ] ≤ F λ[ρ] + ρ(r)v (r) dr

5 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 15/156

The Lieb Formulation of DFT

The relationships between these conjugate functionals are the

Fenchel inequalities

F λ[ρ] ≥ E λ[v ]−

 ρ(r)v (r) dr

E λ[v ] ≤ F λ[ρ] + ρ(r)v (r) dr

Providing that the potential v  supports an N -electron groundstate the inequalities may be sharpened into an equality bymaximization wrt v  or minimization wrt ρ

5 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 16/156

The Lieb Formulation of DFT

The relationships between these conjugate functionals are the

Fenchel inequalities

F λ[ρ] ≥ E λ[v ]−

 ρ(r)v (r) dr

E λ[v ] ≤ F λ[ρ] + ρ(r)v (r) dr

Providing that the potential v  supports an N -electron groundstate the inequalities may be sharpened into an equality bymaximization wrt v  or minimization wrt ρ

So, given a potential v  or density ρ for any interactionstrength λ we can determine its conjugate partnerE. H. Lieb, Int. J. Quant. Chem., 24, 243, (1983)

5 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 17/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 18/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 19/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 20/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 21/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 22/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 23/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 24/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 25/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 26/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 27/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 28/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 29/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 30/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 31/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 32/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 33/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 34/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 35/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 36/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 37/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 38/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 39/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 40/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 41/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 42/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 43/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 44/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 45/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 46/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 47/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 48/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 49/156

6 / 2 8

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 50/156

The Adiabatic ConnectionI t s f th li d H ilt i

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 51/156

In terms of the generalized Hamiltonian

H λ[v ] = T + λW  + i 

v (ri ) = −1

2

2i  + λ

i > j 

1

r ij 

+ i 

v (ri )

and the ensemble-density matrix γ  the universal Liebfunctional may then be written as

F λ[ρ] = inf γ →ρ

Tr H λ[0]γ = Tr H λ[0]γ ρλ

This can be written in terms of the non-interacting functional

F λ[ρ] = F 0[ρ] +

 λ0

dF λ[ρ]

dλdλ

7 / 2 8

The Adiabatic ConnectionIn terms of the generalized Hamiltonian

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 52/156

In terms of the generalized Hamiltonian

H λ[v ] = T + λW  + i 

v (ri ) = −1

2 i 

2i  + λ

i > j 

1

r ij 

+ i 

v (ri )

and the ensemble-density matrix γ  the universal Liebfunctional may then be written as

F λ[ρ] = inf γ →ρ

Tr H λ[0]γ = Tr H λ[0]γ ρλ

This can be written in terms of the non-interacting functional

F λ[ρ] = F 0[ρ] +

 λ0

dF λ[ρ]

dλdλ

Then applying the Hellmann-Feynman theorem

dF λ[ρ]

dλ= Tr W γ ρλ = W λ[ρ]

F λ[ρ] = Tr H 0[0]γ ρ0 +  λ

0

W λ[ρ]dλ

7 / 2 8

The Adiabatic ConnectionThis may be written in the alternative form

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 53/156

This may be written in the alternative form

F λ[ρ] = Tr H λ[0]γ ρ0 +  λ

0

W c,λ[ρ] dλ, W c,λ[ρ] = W λ[ρ]−W 0[ρ]

8 / 2 8

The Adiabatic ConnectionThis may be written in the alternative form

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 54/156

This may be written in the alternative form

F λ[ρ] = Tr H λ[0]γ ρ0 +  λ

0

W c,λ[ρ] dλ, W c,λ[ρ] = W λ[ρ]−W 0[ρ]

Term 1 is the uncorrelated kinetic energy plus λ times thecoulomb and exchange contributions. Term 2 is the correlationcorrection required upto the chosen interaction strength

8 / 2 8

The Adiabatic ConnectionThis may be written in the alternative form

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 55/156

This may be written in the alternative form

F λ[ρ] = Tr H λ[0]γ ρ0 +  λ

0

W c,λ[ρ] dλ, W c,λ[ρ] = W λ[ρ]−W 0[ρ]

Term 1 is the uncorrelated kinetic energy plus λ times thecoulomb and exchange contributions. Term 2 is the correlationcorrection required upto the chosen interaction strengthThe universal functional is then decomposed in the usual

manner

F λ[ρ] = T s[ρ] + λJ [ρ] + λE x[ρ] + E c,λ[ρ]

T s[ρ] = Tr H 0[0]γ ρ0 = Tr T γ ρ0 = minγ →ρ

Tr T γ 

J [ρ] =  

ρ(r1)ρ(r2)r −112 dr1dr2

E x[ρ] = W 0[ρ]− J [ρ]

E c,λ[ρ] =

 λ

0 W c,λ[ρ]d

λ 8 / 2 8

Adiabatic Connection

W ls d fi s t ti f th

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 56/156

We can also define a representation for theexchange-correlation energy as

W xc,λ[ρ] = E x[ρ] + W c,λ[ρ] = W λ[ρ] − J [ρ]

E xc,λ[ρ] =

 λ0W xc,λ[ρ] dλ

9 / 2 8

Adiabatic Connection

We can also define a representation for the

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 57/156

We can also define a representation for theexchange-correlation energy as

W xc,λ[ρ] = E x[ρ] + W c,λ[ρ] = W λ[ρ] − J [ρ]

E xc,λ[ρ] =

 λ0W xc,λ[ρ] dλ

The correlation contribution to the kinetic energy may also bedetermined via

T c,λ[ρ] = E c,λ[ρ]−W c,λ[ρ] =  λ

0

(W c,µ[ρ] −W c,λ[ρ])dµ

9 / 2 8

Adiabatic Connection

We can also define a representation for the

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 58/156

We can also define a representation for theexchange-correlation energy as

W xc,λ[ρ] = E x[ρ] + W c,λ[ρ] = W λ[ρ] − J [ρ]

E xc,λ[ρ] =

 λ0W xc,λ[ρ] dλ

The correlation contribution to the kinetic energy may also bedetermined via

T c,λ[ρ] = E c,λ[ρ]−W c,λ[ρ] =  λ

0

(W c,µ[ρ] −W c,λ[ρ])dµ

So we can obtain the unknown exchange–correlation andcorrelation contributions via a coupling constant integration of W xc,λ[ρ] and W c,λ[ρ]

9 / 2 8

Adiabatic Connection - Geometrical View

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 59/156

10/28

Adiabatic Connection - Geometrical View

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 60/156

10/28

Adiabatic Connection - Geometrical View

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 61/156

10/28

Adiabatic Connection - Geometrical View

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 62/156

10/28

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 63/156

Adiabatic Connection - Geometrical View

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 64/156

10/28

Adiabatic Connection - Geometrical View

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 65/156

10/28

Adiabatic Connection - Geometrical View

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 66/156

10/28

Adiabatic Connection - Geometrical View

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 67/156

10/28

Calculation of Adiabatic Connection CurvesWe typically choose CC wavefunctions and to begin withd i h CC d i f ll i i h hi i

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 68/156

determine the CC density at full interaction strength this isthen reproduced for all values of λ

11/28

Calculation of Adiabatic Connection CurvesWe typically choose CC wavefunctions and to begin withd i h CC d i f ll i i h hi i

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 69/156

determine the CC density at full interaction strength this isthen reproduced for all values of λ

Our task is then to perform the maximization

F λ[ρ] = maxv 

E λ[v ]−

 ρλ=1(r)v (r)d r

= max

v [C λ[v ]]

11/28

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 70/156

Calculation of Adiabatic Connection CurvesWe typically choose CC wavefunctions and to begin withdetermine the CC densit at f ll interaction strength this is

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 71/156

determine the CC density at full interaction strength this isthen reproduced for all values of λ

Our task is then to perform the maximization

F λ[ρ] = maxv 

E λ[v ]−

 ρλ=1(r)v (r)d r

= max

v [C λ[v ]]

To do this we choose the following form for v 

v (r) = v ext(r) + (1 − λ)v ref (r) +

t b t g t (r)

and use the known derivativesδC λδb t 

=

 [ρ(r)− ρλ=1(r)] g t (r)d r

H ut  =

 g u (r

)g t (r)δρ(r)

δv (r)d rd r

11/28

Calculation of Adiabatic Connection CurvesWe typically choose CC wavefunctions and to begin withdetermine the CC density at full interaction strength this is

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 72/156

determine the CC density at full interaction strength this isthen reproduced for all values of λ

Our task is then to perform the maximization

F λ[ρ] = maxv 

E λ[v ]−

 ρλ=1(r)v (r)d r

= max

v [C λ[v ]]

To do this we choose the following form for v 

v (r) = v ext(r) + (1 − λ)v ref (r) +

t b t g t (r)

and use the known derivativesδC λδb t 

=

 [ρ(r)− ρλ=1(r)] g t (r)d r

H ut  =

 g u (r

)g t (r)δρ(r)

δv (r)d rd r

Once maximized the potential is the conjugate partner of thephysical density, at a chosen interaction strength

11/28

Calculating Adiabatic Connections

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 73/156

A. M. Teale, S. Coriani and T. U. Helgaker, (accepted JCP)

12/28

Application to Two Electron SystemsRepeating the optimization many times allows us to build upthe AC curve This allows us to determine E via

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 74/156

the AC curve. This allows us to determine E xc  via

E xc = 1

0W xc,λd λ

13/28

Application to Two Electron SystemsRepeating the optimization many times allows us to build upthe AC curve This allows us to determine E via

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 75/156

the AC curve. This allows us to determine E xc  via

E xc = 1

0W xc,λd λ

This may be compared with

E FCI xc = E FCI − T s − J − E ne − E nn

13/28

Application to Two Electron SystemsRepeating the optimization many times allows us to build upthe AC curve This allows us to determine E via

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 76/156

the AC curve. This allows us to determine E xc  via

E xc = 1

0W xc,λd λ

This may be compared with

E FCI xc = E FCI − T s − J − E ne − E nn

The T s  component is the only unknown part - this can beobtained from maximizing C [v ] at λ = 0 since F 0 = T s .

13/28

Application to Two Electron SystemsRepeating the optimization many times allows us to build upthe AC curve This allows us to determine E c via

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 77/156

the AC curve. This allows us to determine E xc  via

E xc = 1

0W xc,λd λ

This may be compared with

E FCI xc = E FCI − T s − J − E ne − E nn

The T s  component is the only unknown part - this can beobtained from maximizing C [v ] at λ = 0 since F 0 = T s .

In two electron systems it is also the von Weizsackerexpression (a simple functional of the FCI density)

T s[ρ(r)] = 18

 |ρ(r)|ρ(r)

d r

13/28

Application to Two Electron SystemsRepeating the optimization many times allows us to build upthe AC curve This allows us to determine Exc via

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 78/156

the AC curve. This allows us to determine E xc  via

E xc = 1

0W xc,λd λ

This may be compared with

E FCI xc = E FCI − T s − J − E ne − E nn

The T s  component is the only unknown part - this can beobtained from maximizing C [v ] at λ = 0 since F 0 = T s .

In two electron systems it is also the von Weizsackerexpression (a simple functional of the FCI density)

T s[ρ(r)] = 18

 |ρ(r)|ρ(r)

d r

To provide estimates of the basis set limit energies and ACcurves we apply basis set extrapolation techniques.

13/28

Application to Two Electron Systems: The H2 Molecule

Recently there has been interest in studying the AC of theprototypical H2 system

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 79/156

prototypical H2 system

M. Fuchs, Y.-M. Niquet, X. Gonze, and K. Burke, J. Chem. Phys., 122, 094116, (2005)

M. J. G. Peach, A. M. Teale and D. J. Tozer, J. Chem. Phys., 126, 244104, (2007)

14/28

Application to Two Electron Systems: The H2 Molecule

Recently there has been interest in studying the AC of theprototypical H2 system

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 80/156

prototypical H2 system

The dissociation of this molecule is difficult to describeproperly in DFT

M. Fuchs, Y.-M. Niquet, X. Gonze, and K. Burke, J. Chem. Phys., 122, 094116, (2005)

M. J. G. Peach, A. M. Teale and D. J. Tozer, J. Chem. Phys., 126, 244104, (2007)

14/28

Application to Two Electron Systems: The H2 Molecule

Recently there has been interest in studying the AC of theprototypical H2 system

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 81/156

prototypical H2 system

The dissociation of this molecule is difficult to describeproperly in DFT

The correct ground state wavefunction is a singlet at allinternuclear separations R 

M. Fuchs, Y.-M. Niquet, X. Gonze, and K. Burke, J. Chem. Phys., 122, 094116, (2005)

M. J. G. Peach, A. M. Teale and D. J. Tozer, J. Chem. Phys., 126, 244104, (2007)

14/28

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 82/156

Application to Two Electron Systems: The H2 MoleculeRecently there has been interest in studying the AC of theprototypical H2 system

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 83/156

p yp 2 y

The dissociation of this molecule is difficult to describeproperly in DFT

The correct ground state wavefunction is a singlet at allinternuclear separations R 

This is consistent with ρα(r) = ρβ (r) = ρ(r)/2 and can be

enforced in spin restricted calculationsHowever this gives very poor dissociation energies - these canbe fixed by using a spin unrestricted formalism

M. Fuchs, Y.-M. Niquet, X. Gonze, and K. Burke, J. Chem. Phys., 122, 094116, (2005)

M. J. G. Peach, A. M. Teale and D. J. Tozer, J. Chem. Phys., 126, 244104, (2007)

14/28

Application to Two Electron Systems: The H2 MoleculeRecently there has been interest in studying the AC of theprototypical H2 system

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 84/156

p yp 2 y

The dissociation of this molecule is difficult to describe

properly in DFT

The correct ground state wavefunction is a singlet at allinternuclear separations R 

This is consistent with ρα(r) = ρβ (r) = ρ(r)/2 and can be

enforced in spin restricted calculationsHowever this gives very poor dissociation energies - these canbe fixed by using a spin unrestricted formalism

BUT the success comes at a price - the spin densities now

localize so that α is on one side, and β  is on the other !

M. Fuchs, Y.-M. Niquet, X. Gonze, and K. Burke, J. Chem. Phys., 122, 094116, (2005)

M. J. G. Peach, A. M. Teale and D. J. Tozer, J. Chem. Phys., 126, 244104, (2007)

14/28

Application to Two Electron Systems: The H2 MoleculeRecently there has been interest in studying the AC of theprototypical H2 system

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 85/156

p yp y

The dissociation of this molecule is difficult to describe

properly in DFT

The correct ground state wavefunction is a singlet at allinternuclear separations R 

This is consistent with ρα(r) = ρβ (r) = ρ(r)/2 and can be

enforced in spin restricted calculationsHowever this gives very poor dissociation energies - these canbe fixed by using a spin unrestricted formalism

BUT the success comes at a price - the spin densities now

localize so that α is on one side, and β  is on the other !This is clearly unphysical at R = ∞ we should have two spinunpolarized H atoms

M. Fuchs, Y.-M. Niquet, X. Gonze, and K. Burke, J. Chem. Phys., 122, 094116, (2005)

M. J. G. Peach, A. M. Teale and D. J. Tozer, J. Chem. Phys., 126, 244104, (2007)

14/28

Application to Two Electron Systems: The H2 Molecule

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 86/156

15/28

Application to Two Electron Systems: The H2 Molecule

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 87/156

15/28

Application to Two Electron Systems: The H2 Molecule

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 88/156

15/28

Application to Two Electron Systems: The H2 Molecule

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 89/156

15/28

Application to Two Electron Systems: The H2 Molecule

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 90/156

16/28

Application to Two Electron Systems: The H2 Molecule

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 91/156

16/28

Application to Two Electron Systems: The H2 Molecule

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 92/156

16/28

Application to Two Electron Systems: The H2 Molecule

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 93/156

16/28

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 94/156

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 95/156

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 96/156

Application to Two Electron Systems: The H2 Molecule

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 97/156

As the electron-electron interactions are switched on thenature of the wavefunction changes from the KS singledeterminant to the real electronic wavefuntion

This is reflected in the one-electron density matrix. Althoughthe spatial density ρ(r) is fixed

17/28

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 98/156

Application to Two Electron Systems: The H2 Molecule

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 99/156

As the electron-electron interactions are switched on thenature of the wavefunction changes from the KS singledeterminant to the real electronic wavefuntion

This is reflected in the one-electron density matrix. Althoughthe spatial density ρ(r) is fixed

The eigenvectors / eigenvalues of the reduced one-electrondensity matrix are the natural orbitals / occupation numbers

We can examine the occupation numbers as a function of interaction strength to gauge how the wavefunction evolves

17/28

Application to Two Electron Systems: The H2 Molecule

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 100/156

18/28

Application to Two Electron Systems: The H2 Molecule

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 101/156

18/28

Application to Two Electron Systems: The H2 Molecule

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 102/156

18/28

Application to Two Electron Systems: The H2 Molecule

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 103/156

18/28

Application to Two Electron Systems: The H2 Molecule

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 104/156

18/28

Application to Two Electron Systems: The H2 Molecule

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 105/156

18/28

The Modified External PotentialThe potential was expanded as

v λ(r) = v ext(r) + (1− λ)v J(r) + v xc,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 106/156

= v ext(r) + (1− λ)v ref (r) +

t b t g t (r)

T. Heaton-Burgess, F. A. Bulat and W. Yang, Phy. Rev. Lett., 98, 256401, (2007)

19/28

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 107/156

The Modified External PotentialThe potential was expanded as

v λ(r) = v ext(r) + (1− λ)v J(r) + v xc,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 108/156

= v ext(r) + (1− λ)v ref (

r) +

t b t g t (

r)

The exchange–correlation contribution is then

v xc,λ(r) = (1 − λ)[v ref (r)− v J(r)] +

t b t g t (r)

For 2 electron systems we can also use v x (r) = −12v J (r) toget the correlation potential

v c,λ(r) = v xc,λ(r) +(1− λ)

2v J(r)

T. Heaton-Burgess, F. A. Bulat and W. Yang, Phy. Rev. Lett., 98, 256401, (2007)

19/28

The Modified External PotentialThe potential was expanded as

v λ(r) = v ext(r) + (1− λ)v J(r) + v xc,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 109/156

= v ext(r) + (1− λ)v ref (

r) +

t b t g t (

r)

The exchange–correlation contribution is then

v xc,λ(r) = (1 − λ)[v ref (r)− v J(r)] +

t b t g t (r)

For 2 electron systems we can also use v x (r) = −12v J (r) toget the correlation potential

v c,λ(r) = v xc,λ(r) +(1− λ)

2v J(r)

Whilst the potentials may not be unique in a finite basis apenalty function minimization can be performed to givesmooth potentials, changing W λ by less than 10−5 a.u.

T. Heaton-Burgess, F. A. Bulat and W. Yang, Phy. Rev. Lett., 98, 256401, (2007)

19/28

The Modified External Potential: v xc,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 110/156

20/28

The Modified External Potential: v xc,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 111/156

20/28

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 112/156

The Modified External Potential: v xc,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 113/156

20/28

The Modified External Potential: v xc,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 114/156

20/28

The Modified External Potential: v xc,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 115/156

20/28

The Modified External Potential: v xc,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 116/156

20/28

The Modified External Potential: v xc,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 117/156

20/28

The Modified External Potential: v xc,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 118/156

20/28

The Modified External Potential: v xc,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 119/156

20/28

The Modified External Potential: v xc,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 120/156

20/28

The Modified External Potential: v c,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 121/156

C Umrigar and X Gonze, Phys. Rev. A, 58, 3827, (1994)

21/28

The Modified External Potential: v c,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 122/156

C Umrigar and X Gonze, Phys. Rev. A, 58, 3827, (1994)

21/28

The Modified External Potential: v c,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 123/156

C Umrigar and X Gonze, Phys. Rev. A, 58, 3827, (1994)

21/28

The Modified External Potential: v c,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 124/156

C Umrigar and X Gonze, Phys. Rev. A, 58, 3827, (1994)

21/28

The Modified External Potential: v c,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 125/156

C Umrigar and X Gonze, Phys. Rev. A, 58, 3827, (1994)

21/28

The Modified External Potential: v c,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 126/156

C Umrigar and X Gonze, Phys. Rev. A, 58, 3827, (1994)

21/28

The Modified External Potential: v c,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 127/156

C Umrigar and X Gonze, Phys. Rev. A, 58, 3827, (1994)

21/28

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 128/156

The Modified External Potential: v c,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 129/156

C Umrigar and X Gonze, Phys. Rev. A, 58, 3827, (1994)

21/28

The Modified External Potential: v c,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 130/156

C Umrigar and X Gonze, Phys. Rev. A, 58, 3827, (1994)

21/28

The Modified External Potential: v c,λ(r)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 131/156

C Umrigar and X Gonze, Phys. Rev. A, 58, 3827, (1994)

21/28

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 132/156

Building DFT Functionals Using the ACThe obvious motivation for studying the AC is to developimproved E xc  functionals.

Simple forms for approximating W λ can be turned directly

into Exc functionals by integration

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 133/156

into E xc functionals by integration.

A. D. Becke, J. Chem. Phys., 98, 1372, (1993)M. Ernzerhof, Chem. Phys. Lett., 263, 499, (1996)

A. J. Cohen, P. Mori-Sanchez and W. Yang, J. Chem. Phys., 127, 034101, (2007)

22/28

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 134/156

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 135/156

Building DFT Functionals Using the ACThe obvious motivation for studying the AC is to developimproved E xc  functionals.

Simple forms for approximating W λ can be turned directly

into Exc functionals by integration

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 136/156

into E  functionals by integration.This idea has been followed before,

The Becke H&H funcitonal used linear interpolation with E xfor the W 0 and E LDAxc for W 1

Ernzerhof considered a Pade type form

A. D. Becke, J. Chem. Phys., 98, 1372, (1993)M. Ernzerhof, Chem. Phys. Lett., 263, 499, (1996)

A. J. Cohen, P. Mori-Sanchez and W. Yang, J. Chem. Phys., 127, 034101, (2007)

22/28

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 137/156

Building DFT Functionals Using the ACThe obvious motivation for studying the AC is to developimproved E xc  functionals.

Simple forms for approximating W λ can be turned directly

into E xc functionals by integration.

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 138/156

into functionals by integration.This idea has been followed before,

The Becke H&H funcitonal used linear interpolation with E xfor the W 0 and E LDAxc for W 1

Ernzerhof considered a Pade type formMori-Sanchez, Cohen and Yang considered a variety of simpleforms

We investigated a variety of forms for H2 and the HeliumIsoelectronic series with the input parameters determined fromFCI data.

A. D. Becke, J. Chem. Phys., 98, 1372, (1993)M. Ernzerhof, Chem. Phys. Lett., 263, 499, (1996)

A. J. Cohen, P. Mori-Sanchez and W. Yang, J. Chem. Phys., 127, 034101, (2007)

22/28

Building DFT Functionals Using the ACTwo forms were found to give good performance for these twoelectron systems; A Pade type form and an Exponential form.

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 139/156

M. J. G. Peach, A. M. Teale and D. J. Tozer, J. Chem. Phys., 126, 244104, (2007)

M. J. G. Peach, A. M. Miller, A. M. Teale and D. J. Tozer, J. Chem. Phys., 129, 244104, (2008)

23/28

Building DFT Functionals Using the ACTwo forms were found to give good performance for these twoelectron systems; A Pade type form and an Exponential form.

The Pade type form is

W AC1xc λ = a + b λ

1 λ

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 140/156

xc,λ +1 + c λ

E AC1xc  = a + b 

c − loge (1 + c )

c 2

a = W xc,0 = E x

b  = W xc,0 = E GL2c

c  =W 

xc,0

W xc,1 −W xc,0− 1

W xc,1 =

Ψ1 ˆW 

Ψ1

− J 

M. J. G. Peach, A. M. Teale and D. J. Tozer, J. Chem. Phys., 126, 244104, (2007)

M. J. G. Peach, A. M. Miller, A. M. Teale and D. J. Tozer, J. Chem. Phys., 129, 244104, (2008)

23/28

Building DFT Functionals Using the AC

The Exponential form is

W AC6xc,λ = a + b exp(c λ)

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 141/156

, p( )

E AC6xc  = a +b 

c (1− exp(−c ))

b (1− exp(W xc,0/b )) = W xc,0 −W xc,1

a = W xc,0 − b 

c  =W 

xc,0

M. J. G. Peach, A. M. Miller, A. M. Teale and D. J. Tozer, J. Chem. Phys., 129, 244104, (2008)

24/28

Potential Energy Curves of H2 from Approximate FormsThe potential energy curves for the H2 molecule determinedwith accurate input parameters are

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 142/156

25/28

Potential Energy Curves of H2 from Approximate FormsThe potential energy curves for the H2 molecule determinedwith accurate input parameters are

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 143/156

25/28

Potential Energy Curves of H2 from Approximate FormsThe potential energy curves for the H2 molecule determinedwith accurate input parameters are

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 144/156

25/28

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 145/156

Comparison with the Accurate Integrand

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 146/156

A. M. Teale, S. Coriani, and T. U. Helgaker (accepted, JCP)

26/28

Comparison with the Accurate Integrand

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 147/156

A. M. Teale, S. Coriani, and T. U. Helgaker (accepted, JCP)

26/28

Comparison with the Accurate Integrand

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 148/156

A. M. Teale, S. Coriani, and T. U. Helgaker (accepted, JCP)

26/28

Comparison with the Accurate Integrand

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 149/156

A. M. Teale, S. Coriani, and T. U. Helgaker (accepted, JCP)

26/28

Comparison with the Accurate Integrand

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 150/156

A. M. Teale, S. Coriani, and T. U. Helgaker (accepted, JCP)

26/28

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 151/156

ConclusionsWe can calculate AC curves corresponding to accuratecoupled cluster wavefunctions

The resulting curves accurately reproduce the CC density and

the correct exchange–correlation energies

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 152/156

27/28

ConclusionsWe can calculate AC curves corresponding to accuratecoupled cluster wavefunctions

The resulting curves accurately reproduce the CC density and

the correct exchange–correlation energies

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 153/156

The direct optimization approach provides a rapidlyconvergent scheme, this is ensured by our calculation of thesecond derivative

27/28

ConclusionsWe can calculate AC curves corresponding to accuratecoupled cluster wavefunctions

The resulting curves accurately reproduce the CC density and

the correct exchange–correlation energies

Th di i i i h id idl

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 154/156

The direct optimization approach provides a rapidlyconvergent scheme, this is ensured by our calculation of thesecond derivative

The curves provide the missing link between constrainedsearch methods which provide the Kohn-Sham potential butno associated energy functional and approximate energyfunctionals suitable for practical use

27/28

Conclusions

We can calculate AC curves corresponding to accuratecoupled cluster wavefunctions

The resulting curves accurately reproduce the CC density and

the correct exchange–correlation energies

Th di i i i h id idl

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 155/156

The direct optimization approach provides a rapidlyconvergent scheme, this is ensured by our calculation of thesecond derivative

The curves provide the missing link between constrainedsearch methods which provide the Kohn-Sham potential butno associated energy functional and approximate energyfunctionals suitable for practical use

The curves determined are useful for understandingapproximate exchange–correlation forms and the developmentof new ones

27/28

Acknowledgements

Trygve Helgaker Sonia Coriani

8/7/2019 adiabatic formalism

http://slidepdf.com/reader/full/adiabatic-formalism 156/156

David Tozer Michael Peach

28/28