Acknowledge Abstract Zusammenfassung

download Acknowledge Abstract Zusammenfassung

of 14

Transcript of Acknowledge Abstract Zusammenfassung

  • 8/3/2019 Acknowledge Abstract Zusammenfassung

    1/14

    IAcknowledgement

    Ecological and Economical efficiency of Constructed Wetlands and Transferability of Decentralized

    Wastewater Treatment Operation to Nepal

    Acknowledgments

    First of all, I would like to extend my sincere gratitude and warm appreciation to my

    supervisors Prof. Dr.-Ing. Artur Mennerich and Prof. Dr.rer.nat. Brigitte Urban for theirhelp, support and cooperation during the preparation of my thesis work to complete in

    the suitable time. I am also extremely thankful to the Ostfalia University, Campus

    Suderburg and all its personnel, which has provided me a platform to add a new

    academic dimension in my career.

    My special thanks go to German Academic Exchange Services (Deutscher

    Akademisher Austausch Dienst, DAAD) for giving me the opportunity to carry out my

    postgraduate study in Ostfalia University.

    I am thankful to Dipl.-Ing. Michael Blumberg, Managing Director of Ingenieurbro

    Blumberg, for providing me the necessary data of Gadenstedt and Berel, arranging

    related literatures, materials and helping for field visits. I would like to thank the staff of

    Ingenieurbro Blumberg especially Dip-.Ing Jan Valentin Khne and Mrs Silke Hanke

    for their kindly cooperation during my practicum period in Ingenieurbro Blumberg,

    Gttingen.

    My thank goes to Mr. Norman Stab and Miss Catharina Ohlemann for their kind

    support during Laboratory work of wastewater sample analysis in Gro Lafferde. I

    would like to give thanks to Mr. Siegfried Zenk and Mr. Marko Lux for their help during

    the sample collection at Berel and laboratory analysis at Wasserverband Peine

    regional office, Baddeckenstedt.

    Last but not least, I would like to extend my sincere gratitude to my parents for their

    continuous inspiration and support. An appreciation to my lovely wife Mrs. Shanti Joshi

    and dear son Rijul shrestha for their enduring patience and devotion.

    Raju Shrestha

    Ostfalia University of applied Science

    Campus Suderburg,

    Water Management in Tropical and Sub-tropical RegionSuderburg, March 2010

  • 8/3/2019 Acknowledge Abstract Zusammenfassung

    2/14

    IIAbstract

    Ecological and Economical efficiency of Constructed Wetlands and Transferability of Decentralized

    Wastewater Treatment Operation to Nepal

    Abstract

    Constructed wetlands (CWs) are engineered systems designed and constructed to

    treat wastewater and used as part of decentralized system of wastewater treatment,due to their characteristics as robust, low-tech systems and relatively low

    operational and maintenance requirements. The first experiments aimed at the

    possibility of wastewater treatment by wetlands plants were undertaken by Kthe

    Seidel in Germany in 1957 at the Max Plank Institute in Pln (Vymazal, 1998).

    Constructed wetlands for domestic wastewater treatment came to prominence in the

    mid 1980s in Europe and this technique was used for wastewater treatment of small

    communities ranging from a single house to about 2000 people. After their successful

    application in domestic wastewater treatment, CWs also used in many other fields

    including industrial effluent treatment, acid mine drainage, agricultural effluent, landfill

    leach ate and road run-off (Cooper, 1996). CWs play an important role in many

    ecological concepts.

    The classification of constructed wetlands is based on hydrologic modes and divided

    into two types. First type of constructed wetland is free-water surface (FWS) in which

    the water level is over the surface and similar in appearance to natural marshes.Second type is subsurface flow (SSF) system, in which the water level is maintained

    below the surface of bed. Subsurface flow (SSF) system can be further categorized

    into two types based on the flow pattern, one is horizontal subsurface flow (HSSF), in

    water flows horizontally from inlet to outlet and another is vertical subsurface flow

    (VSSF), in which water percolate from top to bottom through the plat root zone.

    (Kadlec and Wallace et al., 2009).

    Phragmites communis, Typha latifolia, Typha angustifolia or other aquaticmacrophytes are used in a constructed wetland provides a better hydraulic

    conductivity and oxygenation in the root zone providing suitable environment for the

    micro-organism development. CWs show the high efficiency of organic materials

    (COD, BOD) reduction by micro-organism, suspended solids by filtration, nitrogen by

    nitrification and denitrification and plant uptake, phosphorus by adsorption and

    precipitation with calcium, aluminum, iron and plant uptake. Similarly pathogen is

  • 8/3/2019 Acknowledge Abstract Zusammenfassung

    3/14

    IIIAbstract

    Ecological and Economical efficiency of Constructed Wetlands and Transferability of Decentralized

    Wastewater Operation to Nepal

    reduced by absorption and natural die off, heavy metal by precipitation and plant

    uptake.

    Two project (Gadenstedt and Berel) of waste water treatment through the CWs lies in

    Lahstedt and Baddeckenstedt municipality situated in the German Federal State

    Lower Saxony. CWs in Gadenstedt were designed for 3000 inhabitants and

    constructed in 1998. Similarly the project in Berel designed for 600 people and

    constructed in 2005.The decentralized system of wastewater was found to be highlyeffective in removing pollutants. In the case of project Berel, effluent value from

    constructed wetlands is found BOD5 (13.67 mg/l), COD (38.45 mg/l), NH4-N (6.87

    mg/l), TN (32.81 mg/l) and phosphorus (2.83 mg/l) respectively. Similarly at

    Gadenstedt, concentration of BOD5, COD, NH4-N, TN and TP are found 4.46 mg/l,16.65 mg/l, 0.61mg /l, 7.30 mg/l and 1.81 mg/l respectively. The overall efficiency of

    treatment plants achieved by removing the COD (86 %), BOD (94%), NH4-N (81%),

    and TP (52%) at Berel and COD (92%), BOD (95%), NH4-N (96%), TN (81%) and TP

    (55%) at Gadenstedt respectively.

    The main objective of the case study is to find out the efficiency of decentralized waste

    water treatment system through constructed wetlands and data analysis, discussion

    and conclusion regarding the suitability of constructed wetlands in the context of

    Nepal.

    From an environmental point of view, there is the added bonus of re-creating wildlife

    habitats. In terms of socio-economic benefits the fact that, once installed, reed beds

    are very cheap to run and are readily adaptable to wide range of domestic waste,

    agricultural effluent as well as industrial waste products. Theses technology are

    suitable not only for the developed country but also to the least developing countryespecially like Nepal for improving the quality of waste water and re-use in agricultural

    land, aesthetic purpose and preserving aquatic life.

    Key words: Constructed wetlands, Decentralized system, Wastewater Treatment,

    Free water flow, Horizontal subsurface flow, Vertical subsurface flow, COD, BOD,

    Wildlife

  • 8/3/2019 Acknowledge Abstract Zusammenfassung

    4/14

    IVZusammenfassung

    Ecological and Economical efficiency of Constructed Wetlands and Transferability of Decentralized

    Wastewater Operation to Nepal

    Zusammenfassung

    Bewachsen Bodenfilter (CWS) sind eine Systeme entwickelt und konstruiert, um

    Abwasser zu behandeln und als Teil der dezentralen Abwasserbehandlung, dieaufgrund ihrer Eigenschaften als "stabil", "niedrig technologie"-Systemen und der

    relativ geringen betrieblichen Anforderungen.Die ersten Versuche zielten die

    Mglichkeit der Abwasserreinigung von Feuchtgebieten Pflanzen durchgefhrt von

    Kthe Seidel in Deutschland in 1957 am Max-Plank-Institut in Pln (Vymazal, 1998).

    Bewachsen Bodenfilter fr Behandlung von huslichem Schmutzwasser machte sich

    Mitte der 1980 Jahre in Europa und wurde diese Technik fr die Abwasserbehandlung

    von kleinen Gemeinden von einem Einfamilienhaus bis etwa 2000 Menschen genutzt.

    CWs verwendet auch in vielen anderen Bereichen z.B. industrielle

    Abwasserbehandlung, Acid Mine Drainage, landwirtschaftliche Abwsser,

    Mlldeponien Lauge a und Strae run-off (Cooper, 1996). CWs spielen eine wichtige

    Rolle in vielen kologische Konzepte.

    Die Klassifizierung von Pflanzenklranlagen ist die Grundlage auf die hydrologischen

    Modi und gliedert sich in zwei Arten. Erste Art der Pflanzenklranlage ist frei

    Wasseroberflche (FWS), in dem der Wasserstand ber der Oberflche und imAussehen hnlich der natrlichen Smpfen. Zweite Art ist Grundwasserfluss (SSF),

    bei dem der Wasserstand unterhalb der Oberflche Bett gepflegt wird.

    Grundwasserfluss (SSF) System kann weiter kategorisiert in zwei Arten auf den

    Strmungsmuster Basis werden, ist eine horizontale Grundwasserfluss (HSSF), in

    Wasser fliet horizontal vom Einlass zum Auslass und ein anderer vertikaler

    Grundwasserfluss (VSSF), in denen Wasser versickern von oben nach unten durch

    die Pflanzen Wurzeln Zone. (Kadlec und Wallace et al., 2009).

    Phragmites communis, Typha latifolia, Typha angustifolia oder andere aquatische

    Makrophyten verwendet in einem bewachsenen Bodenfilter zur eine bessere

    hydraulische Leitfhigkeit und die Sauerstoffversorgung im Wurzelbereich

    untersttzend geeigneter Rahmenbedingungen fr den Mikroorganismus Entwicklung.

    CWs zeigen die hohe Effizienz der organischen Materialien (CSB, BSB) Reduktion

    von Mikroorganismen, Schwebstoffe durch Filtration, Stickstoff durch Nitrifikation und

  • 8/3/2019 Acknowledge Abstract Zusammenfassung

    5/14

    VZusammenfassung

    Ecological and Economical efficiency of Constructed Wetlands and Transferability of Decentralized

    Wastewater Operation to Nepal

    Denitrifikation und Pflanzenaufnahme, Phosphor durch Adsorption und Fllung mit

    Calcium, Aluminium, Eisen und Pflanzenaufnahme. Ebenso Erreger wird durch

    Absorption reduziert und natrlichen Absterben, Schwermetallentfernung durch

    Fllung und Pflanzenaufnahme.

    Zwei-Projekt (Gadenstedt und Berel) der Abwasserbehandlung durch die CWS liegt in

    Lahstedt und Baddeckenstedt Gemeinde im deutschen Bundesland Niedersachsen.

    CWs in Gadenstedt wurden fr 3000 Einwohner ausgelegt und gebaut im Jahr 1998.

    hnlich dem Projekt in Berel fr 600 Personen ausgelegt und gebaut im Jahr 2005.

    Das System findet man sich als hoch wirksam bei der Beseitigung von Schadstoffen.

    Im Falle des Projekts Berel Ablauf Wert von bewachsen Bodenfilter enthlt BSB5

    (13,67 mg/l), CSB (38,45 mg/l), NH4-N (6,87 mg/l), TN (32.81 mg/l) und Phosphor

    (2,83 mg/l). Ebenso bei Gadenstedt, Konzentration des BSB5, CSB, NH4-N, TN und

    TP sind 4,46 mg / l, 16,65 mg / l, 0.61mg / l, 7,30 mg / l und 1,81 mg / l bzw. gefunden.

    Der Gesamtwirkungsgrad von Klranlagen durch Entfernen der CSB (86%), BSB

    (94%), NH4-N (81%) und TP (52%) bei Berel und CSB (92%), BSB (95%) erreicht ,

    NH4-N (96%), TN (81%) und TP (55%) bei Gadenstedt

    Aus kologischer Sicht gibt es den zustzlichen Bonus von Neuerstellen Lebensrumefr Wildtiere. Im Hinblick auf die sozio-konomischen Vorteile der Tatsache, dass

    einmal installiert Schilfbeets sehr billig sind zu laufen und sind leicht anpassbar an

    breite von Hausmll, Abwsser aus der Landwirtschaft sowie Industrie-Abflle. Diese

    Technologie sind besonders geeignet nicht nur fr die entwickelten Lnder, sondern

    auch fr die am wenigsten entwickelten Land wie Nepal fr die Verbesserung der

    Qualitt von Abwasser und Wiederverwendung in landwirtschaftliche Flchen,

    sthetischen Zweck und zur Erhaltung von Leben im Wasser.

    Schlsselwrter: Pflanzenklranlagen, Dezentralen System, Abwasserbehandlung,Freies Wasser flieen, Horizontale Untergrund Strmung, VertikaleUntergrund Strmung, CSB, BSB, Wildlife

  • 8/3/2019 Acknowledge Abstract Zusammenfassung

    6/14

    XList of Table

    Ecological and Economical efficiency of Constructed Wetlands and Transferability of Decentralized

    Wastewater Operation to Nepal

    List of Table

    Table 3.1: Wastewater treatment plant Shenyang (China) for 6000 people.............................10

    Table 3.2: Analysis of domestic waste water by the American Public Health

    Association.............................................................................................................16

    Table 3.3: Per capita contributions of domestic wastewater characteristics............................17

    Table 3.4: Effluent standards of different European countries for small scale

    discharges into the surface water.............................................................................21

    Table 4.1: Temperature coefficient for rate constant in design equations................................37

    Table 4.2: Values of areal rate constant...................................................................................39

    Table 5.1: Typical kf values.......................................................................................................41

    Table 5.2: Graded gravel used in different layer as recommend by Burkaat Oaklands Park......................................................................................................42

    Table 6.1: Main aquatic macrophytes used in constructed wetlands.......................................45

    Table 6.2: Characteristics of main aquatic macrophytes..........................................................46

    Table 6.3: Oxygen release from individual roots of Phramites, Typha latifolia,

    Glyceria maxima and Iris pseudacorus measured by an oxygen

    microelectrode..........................................................................................................48

    Table 7.1: Condition of wastewater treatment plants in Kathmandu valley.............................52Table 7.2: List of Constructed Wetlands in Nepal....................................................................54

    Table 7.3: Efficiency of CWs....................................................................................................55

    Table 7.4: Summary statistics of inlet and Outlet concentration and

    mean efficiency Dhulikhel Hospital Constructed WetlandSystem......................................................................................................................57

    Table 7.5: Concentration of pollutants at Sunga......................................................................60

    Table 8.1: Technical data of Constructed Wetlands at Gadenstedt.........................................69

    Table 8.2: Facts and figures about the combined wastewater treatment biotope....................72

    Table 8.3: Limiting pH values for different aquaculture............................................................75

    Table 8.4: Sample preparation as per upper limit of measuring range of BOD5......................79

    Table 8.5: Requirements for waste water at the point of discharge into the

    Sangebach.............................................................................................................86

    Table 8.6: Technical data of screening system installed in Berel.............................................88

  • 8/3/2019 Acknowledge Abstract Zusammenfassung

    7/14

    XIList of Table

    Ecological and Economical efficiency of Constructed Wetlands and Transferability of Decentralized

    Wastewater Operation to Nepal

    Table 9.1: NH4-N reduction in percentage by TF and CWs...................................................102

    Table 9.2: Annual average value of nitrogen concentration at Gadenstedt WWTP..............106

    Table 9.3: Monthly average effluent data of different nitrogen form measured

    in constructed wetlands and polishing pond at Berel WWTP...............................107

    Table 9.4: Summary of removal efficiency of constructed Wetlands

    in Germany and Nepal...........................................................................................120

    Table 9.5: Efficiency of CWs and operation cost....................................................................122

  • 8/3/2019 Acknowledge Abstract Zusammenfassung

    8/14

    XIIList of Figure

    Ecological and Economical efficiency of Constructed Wetlands and Transferability of Decentralized

    Wastewater Operation to Nepal

    List of Figure

    Fig 3.1: Constructed wetlands in the treatment cycle...............................................................11

    Fig 3.2: Cross section of an HSF constructed wetland.............................................................12Fig 3.3: Detail cross- section of Vertical Flow Subsurface CWS..............................................13

    Fig 3.4: A range of possible source of household wastewaterfrom toilet, kitchen, bathroom, laundry and others.......................................................15

    Fig 3.5: Permeability test model with different material (Gravel, Sand, Silt and clay)..............25

    Fig 3.6: Nitrogen transformation in constructed wetlands........................................................29

    Fig 5.1: Example of filter material used in CWs for municipal

    Wastewater treatment in Brazil and Peru....................................................................42

    Fig 6.1: Emergent macrophytes (a) Phragmites australis

    (b) Schoenoplectus lacustris (c) Typha latifolia ..........................................................44

    Fig 6.2: Oxygen mass balance for Phragmites australis

    in the constructed reed beds at Kal, April 1988 (g O2/m2d) ......................................47

    Fig 7.1: Map of Nepal showing Mountains, Mid hill and Terai regions49

    Fig 7.2: Map of Wastewater Treatment Plants in Kathmandu Valley......................................51

    Fig 7.3: Guheshwori Wastewater Treatment Plant..................................................................53

    Fig 7.4: Site Plan of the Constructed Wetland System at Dhulikhel Hospital...........................56

    Fig 7.5: Solid Waste dumping site before and after the construction of CWs

    at Sunga wastewater treatment plant, Thimi...............................................................58

    Fig 8.1: Map of Gadenstedt, Lahstedt.........................................................................61

    Fig 8.2: Population graph of Gadenstedt.................................................................................62

    Fig 8.3: Combined waste water biotope in Oberg....................................................................63

    Fig 8.4: Isometric view of Gadenstedt and project site (from Google).....................................64

    Fig 8.5: Screening and collection drum

    (HUBER Screenings Treatment Systems in Gadenstedt)...........................................65

    Fig 8.6: Grit chamber in Gadenstedt treatment plant...................................................66

    Fig 8.7: a) Wastewater dosing into the bed through the rotating arm,

    b) lay out plan of project, c) trickling filter and

  • 8/3/2019 Acknowledge Abstract Zusammenfassung

    9/14

    XIIIList of Figure

    Ecological and Economical efficiency of Constructed Wetlands and Transferability of Decentralized

    Wastewater Operation to Nepal

    d) diagram of biological process in trickling filter.........................................................67

    Fig 8.8: a) Construction phase of Lagoon, b) Bed preparation

    of Constructed wetlands, c) planting Reeds in bed during

    the construction period of 1997-1998,d) after the maturation of Reed ..................................................................................68

    Fig 8.9: CWs used as a tertiary treatment system...................................................................70

    Fig 8.10: CWs used as secondary treatment system at Gadenstedt WWTP...........................71

    Fig 8.11: Combined wastewater treatment biotope (Lagoon) at Gadenstedt..........................71

    Fig 8.12: Isometric view of wastewater treatment plant at Gadenstedt....................................73

    Fig 8.13: pH meter (WTW pH 315i)..........................................................................................75

    Fig 8.14: Influent and effluent sample taken at Gadenstedt WWTP........................................77

    Fig 8.15: left: Sample of wastewater in the Laboratory for the analysisRight: Miss Katharina Ohlemann (Lab technician) using

    the Homogenizer to homogenize the sample...........................................................78

    Fig 8.16:SPECTROPHOTOMETER DR2800 for the measurement of BOD5and other required data also in Gro- Lafferde ........................................................79

    Fig 8.17: COD measurement of LCK-514, LCK-314 cuvettes kits box

    and HT200S high temperature Thermostat ............................................................80Fig 8.18: Total nitrogen (TN) measurement of LCK-338 cuvettes kits box

    with reagents (A, B, C and D)...................................................................................81

    Fig 8.19: LCK-303 cuvettes test sample for NH4-N and Kit box

    with instruction of measurement process.................................................................82

    Fig 8.20: LCK -340 and LCK -339 cuvettes kit boxes for NO3-N measurement.....................83

    Fig 8.21:Map of Wolfenbttel district and Berel.......................................................................84

    Fig 8.22: Geographic location of Berel.....................................................................................84

    Fig 8.23: Photo of Berel village and treatment plant.................................................................85

    Fig 8.24: COD and BOD effluent values of self-monitoring of the treatment plant Berel..........86

    Fig 8.25: Ntotal and Ptotal effluent values of self-monitoring of the treatment plant Berel............86

    Fig 8.26: Screening and automatic screening waste collected in dust pin

    at Berel WWT............................................................................................................87

  • 8/3/2019 Acknowledge Abstract Zusammenfassung

    10/14

    XIVList of Figure

    Ecological and Economical efficiency of Constructed Wetlands and Transferability of Decentralized

    Wastewater Operation to Nepal

    Fig 8.27: Isometric view of Berel wastewater treatment plant at Berel.....................................88

    Fig 8.28: a) Gravel filling over the drain pipe in the bottom layer of bed,b) Reed planting in the bed, c) Lay out plan of Berel treatment plant(Pond and constructed wetlands) d) Reed after the maturation,

    e) End cape fitting at distribution pipe................................................................89

    Fig 8.29: shows the structure of the filter materials used in CWs schematically.....................90

    Fig 8.30: Water sample collection as shown in circle at Berel treatment plant.........................91

    Fig 8.31: left: Mr. Marko Lux (Lab technician) using the Homogenizer to homogenize the

    sample and right: Sample of wastewater in the Lab for the analysis........................92

    Fig 8.32:OxiTop Respirometer for BOD measurement in Laboratory......................................92Fig 9.1: COD influent and effluent values at Gadenstedt WWTP.............................................95

    Fig 9.2: COD reduction efficiency of CWs and TF at Gadenstedt WWTP................................96

    Fig 9.3: COD influent and effluent values and reduction efficiency at Berel WWTP...............97

    Fig 9.4: BOD5 influent and effluent values at Gadenstedt WWTP..........................................98

    Fig 9.5: BOD5 reduction in percent by TF and CWs...............................................................99

    Fig 9.6: BOD influent and effluent measured values of wastewater at Berel........................101

    Fig 9.7: NH4-N influent and effluent values at Gadenstedt WWTP........................................102

    Fig 9.8: NH4-N influent and effluent values at Berel WWTP..................................................103

    Fig 9.9. NH4-N reduction efficiency of Berel WWTP..............................................................104

    Fig 9.10: Total nitrogen (TN) influent and effluent values at Gadenstedt WWTP...................106

    Fig 9.11: Total Nitrogen influent and effluent values of Berel WWTP....................................107

    Fig 9.12: phosphorus influent and effluent values of Gadenstedt WWTP.............................109

    Fig 9.13: phosphorus influent and effluent values of Berel WWTP........................................110

    Fig 9.14: Phosphorus reduction efficiency of Berel WWTP....................................................110

    Fig 9.15: pH value of influent and effluent of wastewater at Gadenstedt WWTP...................112

    Fig 9.16: pH influent and effluent values of Berel WWTP......................................................113

    Fig 9.17: Annual pattern of water and air temperatures at Gadenstedt WWTP....................115

  • 8/3/2019 Acknowledge Abstract Zusammenfassung

    11/14

    XVList of Figure

    Ecological and Economical efficiency of Constructed Wetlands and Transferability of Decentralized

    Wastewater Operation to Nepal

    Fig 9.18: Relationship between annual average water and air

    temperature in CWs, Gadenstedt (Tw = 0.44 Ta, R2 = 0.74) ................................116

    Fig 9.19: Water temperature of inflow and outflow from SP, CWs,

    and PP of Berel WWTP...................................................................................117

    Fig 9.20: Power consumed by conventional system and Constructed Wetlands..................118

    Fig 9.21: Energy cost of Gadenstedt WWTP..........................................................................119

    Fig 9.22: Power consumed and total power cost for Berel WWTP.........................................119

    Fig 9.23: (a) Mr. Matthias Meyer with a Kingfisher in the station.(b) Snails (invertebrates) on bed,

    (c) Tufted Duck swimming at combined biotopes (Lagoon).................................124

    http://animals.about.com/od/i/g/invertebrate.htmhttp://animals.about.com/od/i/g/invertebrate.htm
  • 8/3/2019 Acknowledge Abstract Zusammenfassung

    12/14

    XVIAcronyms and Abbreviations

    Ecological and Economical efficiency of Constructed Wetlands and Transferability of Decentralized

    Wastewater Operation to Nepal

    List of Appendix

    Appendix - I: BOD5 and COD values of Gadenstedt and Berel WWTP.................................134

    Appendix - II: NH4-N, NO3-N, NO2-N, TN measurement of Gadenstedtand Berel WWTP.............................................................................................141

    Appendix - III: Phosphorus measurement at Gadenstedt and Berel WWTP.........................146

    Appendix - IV: Temperature data and pH values of Gadenstedt and Berel WWTP................150

    Appendix - V: Discharge and power measurement at Gadenstedt and Berel WWTP............151

  • 8/3/2019 Acknowledge Abstract Zusammenfassung

    13/14

    XVIIAcronyms and Abbreviations

    Ecological and Economical efficiency of Constructed Wetlands and Transferability of Decentralized

    Wastewater Operation to Nepal

    Acronyms and Abbreviations

    ADB = Asian Development Bank

    ATV = Abwasser Technische VereinigungBASP = Bagmati Area Sewerage Construction Rehabilitation Project

    BOD = Biochemical oxygen demand

    C = Degree Celsius

    COD = Chemical oxygen demand

    CWs = Constructed Wetlands

    d = day

    DWSS = Department of Water Supply and SewerageEC = European Communities

    ENPHO = Environment and Public Health Organization

    FWS = Free Water Surface

    g = gram

    GDP = Gross Domestic Production

    ha = hector

    HDPE = High-density polyethyleneHF CWs = Horizontal Flow Constructed Wetlands

    HSF = Horizontal subsurface

    HSSF = Horizontal Subsurface Flow

    KV = Kathmandu Valley

    kWh = Kilowatt hour

    L = Liter

    m 2 = square meter

    mg = milligram

    MLD = Million litres per day

    N = Nitrogen

    P = Phosphorus

    p.e. = Person equivalent

    PP = Polishing pond

    PVC = Polyvinyl chloride

    RBTS = Reed Bed Treatment System

  • 8/3/2019 Acknowledge Abstract Zusammenfassung

    14/14

    XVIIIAcronyms and Abbreviations

    Ecological and Economical efficiency of Constructed Wetlands and Transferability of Decentralized

    Wastewater Operation to Nepal

    rpm = Revolution per minute

    RZM = Root Zone Method

    SF = Subsurface Flow

    SKM = Sushma Koirala MemorialSP = Settling pond

    SS = Suspended Solids

    TF = Trickling filter

    TN = Total nitrogen

    TP = Total phosphorus

    TSS = Total Suspended Solids

    USEPA = United States Environmental Protection AgencyVF CWs = Vertical Flow Constructed Wetlands

    VSF = Vertical subsurface flow

    VFBs = Vertical Flow Beds

    WC = Water Closet

    WHO = World Health Organization

    WWTP = Wastewater treatments plant

    Yr = Year