ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

25
Dept. of Agricultural & Biological Engineering University of Illinois ABE 463 Electro-hydraulic systems Laplace transform Tony Grift 0 t st t L f t f t e dt F s

description

Pierre-Simon Laplace “The French Newton” (1749-1827) Why do we need a Laplace Transform? Definition Laplace Transform Laplace Transform of functions Unit step function Ramp function Exponential function Cosine/Sine Impulse function (dirac delta) Laplace Transform of operations Convolution

Transcript of ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Page 1: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Dept. of Agricultural & Biological EngineeringUniversity of Illinois

ABE 463 Electro-hydraulic systems

Laplace transform

Tony Grift

0

t

st

t

L f t f t e dt F s

Page 2: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Pierre-Simon Laplace “The French Newton” (1749-1827)

Why do we need a Laplace Transform?Definition Laplace TransformLaplace Transform of functions

Unit step functionRamp functionExponential functionCosine/SineImpulse function (dirac delta)

Laplace Transform of operationsConvolution

Page 3: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

The Laplace transform can be used to transform a differential equation into an algebraic equation that can be solved. After transforming back to the time domain we obtain a solution of the differential equation in time.

0

stL f t f t e dt

Time domain: Differential equation

s-domain: algebraic equation Solution in s-domain

Inverse Laplace Transform

Solution in time domain

Page 4: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

The Laplace transform is a linear operation

000

dtetgdtetfdtetgtftgtfL ststst

sGsFtgtfL

0 0

st stL Kf t Kf t e dt K f t e dt KF s

sKFtKfL

Red frame: Important result

Page 5: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Laplace transform of unit step function

ss

es

dtetL stst 1101110

0

s

tL 11

0

stL f t f t e dt F s

Definition Laplace Transform

The variable s is a constant under integration with respect to t

Page 6: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Laplace transform of a ramp function

22020

00

0

110110

11

sse

sdte

s

dtes

es

tdtetttfL

st

u

st

u

st

u

st

vu

st

v

Integration by parts

2

1s

ttfL

Blue frame: You should know this already

vuvuuv

vuvuuv

vuuvvu

Page 7: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Laplace transform of an exponential function

0 0

0

1 1 10

a s tat at st

a s t

L e e e dt e dt

ea s a s s a

1atL es a

Page 8: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Laplace transform of cosine function

22cosas

satL

cos Re e jatat

e cos sinjat at j at

0

0 0

2 2 2 2

1 1cos Re 0

1 Re

ja s t ja s tjat stL at e e dt e dt ea s ja s

s ja s ja ss ja s ja s a s a

Page 9: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Laplace transform of sine function

2 2sin aL ats a

sin Im e jatat

e cos sinjat at j at

0

0 0

2 2 2 2

1 1sin Im 0

1 Im

ja s t ja s tjat stL at e e dt e dt ea s ja s

s ja s ja as ja s ja s a s a

Page 10: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Laplace transform of an impulse ‘function’ (Dirac delta distribution)

0

0

lim 1 10

1lim0

st st

s

L t e dt es

e

s

...!3

1!2

11 32 tohxxxe x

Writing as a McLaurin series xe

...!3

1!2

11 32 tohssse s

Writing as a McLaurin series se

0

1/

Page 11: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Laplace transform of impulse (Dirac delta distribution)

...!3

1!2

11 32 tohssse s

...!3

1!2

111 2 tohsss

e s

2lim lim1 1 11 . . . 10 0 2! 3!

seL t s s h o ts

1L t

Page 12: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Check Laplace Transform of differentiation operation

022 0sincos

fsF

bsbsbtbLtfL

0fssFtfL

btbtfbttf cossin

2222 coscosbs

sbbtbLbs

sbtL

Example

Is this correct?

Page 13: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Laplace transform of operations

Page 14: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Laplace transform of differentiation operation

0000

00

0

fssFdtetfsf

dtestfetfdtetfdt

tdfL

st

stst

v

st

u

vuvuuv

vuvuuv

vuuvvu

Product rule:

Integration by parts

0fssFtfL

Page 15: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Laplace Transform of a function shifted in time

0

0

st

s t aas as

L f t a f t a e dt

e f t a e d t a e F s

:Note d t a dt

asL f t a e F s

Page 16: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Laplace transforms of common functions and operations

Page 17: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Initial value and final value theorems

Page 18: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Final value theorem proof (simplified)

lim lim0

f t sF st s

0 00

0st st st

v vu u u v

L f t f t e dt f t e f t s e dt f sF s

0 0

1

lim lim lim0 0

0 0 0

lim0

st stdf dfsF s f e dt e dt f t fs s sdt dt

sF s fs

Page 19: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Convolution

Page 20: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Convolution example: Moving average filter

1st iteration

2nd iteration

General

Continuous case

3322111 31 gfgfgfh

4332212 31 gfgfgfh

3

11 3

1n

knnk gfh

0

h t K f x g t x dx

Page 21: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Convolve this vector

1 -2 3

7 2 5 6 8 9 5 1 1 2 8 2 7 2 8 3

21 -8 18 10 17

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

3

11

k n n kn

h f g

MatLab: conv(a,[3 -2 1])

Page 22: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Correct answer 1 -2 3

7 2 5 6 8 9 5 1 1 2 8 2 7 2 8 3

21 -8 18 10 17 17 5 2 6 5 21 -8 25 -6 27 -5 2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

1 -2 3

3

11

k n n kn

h f g

Page 23: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Convolution in time domain = Multiplication in Laplace domain

0 0

0 0 0 0

0 0

0 0

st

st st

s v u

su sv

L h t H s f u g t u du e dt

f u g t u du e dt f u du g t u e dt

v t udv dt

H s f u d g v e dv

f u e du g v e dv

F s G s

Page 24: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

The time equivalent of multiplication in the Laplace (and also Fourier) domain is called convolution

g t

G s

F s

f t

H s G s F s

Time domain

s-domain

0

*u t

u

h t g t f t f u g t u du

Impulse response of the systemat t - u

The total response is in fact the sum of all impulse responses over time weighted (multiplied) by the input signal

Page 25: ABE 463 Electro-hydraulic systems Laplace transform Tony Grift

Dept. of Agricultural & Biological EngineeringUniversity of Illinois

ABE 463 Electro-hydraulic systems

Laplace transform

The End