A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange...

32
Johann Radon Institute for Computational and Applied Mathematics A TDNNS-FETI method for compressible and almost incompressible elasticity .. Astrid Pechstein 1 & Clemens Pechstein 2 1 Institute of Computational Mechanics Johannes Kepler University, Linz (A) 2 Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences, Linz (A) .. DD22, Lugano, September 16, 2013 Page 1/29

Transcript of A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange...

Page 1: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

A TDNNS-FETI method for compressibleand almost incompressible elasticity

.. Astrid Pechstein1 & Clemens Pechstein2

1 Institute of Computational MechanicsJohannes Kepler University, Linz (A)

2 Johann Radon Institute for Computationaland Applied Mathematics (RICAM)

Austrian Academy of Sciences, Linz (A)

..

DD22, Lugano, September 16, 2013

, Page 1/29

Page 2: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Overview

TDNNS (Tangential Displacement – Normal-Normal Stress)

Motivation of TDNNS-FETI

TDNNS-FETI Method

Theory

Numerical Results

, Page 2/29

Page 3: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Overview

TDNNS (Tangential Displacement – Normal-Normal Stress)

Motivation of TDNNS-FETI

TDNNS-FETI Method

Theory

Numerical Results

, TDNNS (Tangential Displacement – Normal-Normal Stress) Page 3/29

Page 4: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Linear elasticity

Ω ⊂ Rd , d = 2 or 3

−divσ = f in Ω

σ = D ε(u) in Ω, where ε(u) = 12 (∇u +∇>u)

u = uD on ΓD

σn = tN on ΓN

Hooke’s law:

D ε =E

(1 + ν)ε+

(1 + ν)(1− 2ν)tr(ε)I

for d = 2: plane strain or plane stress

, TDNNS (Tangential Displacement – Normal-Normal Stress) Page 4/29

Page 5: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

TDNNS Formulation A. Pechstein & J. Schoberl ’11, ’12

Mixed TDNNS finite element (P1, here 2D)

TangentialcontinuousDisplacement(Nedelec II)

σu symmetricNormal-NormalcontinuousStress

Discrete variational formulation∑T

∫T

(divσ + f) · v dx +∑F

∫F

[[σnt ]] · vt ds = g2 ∀v

∑T

∫T

(D−1σ − ε(u)) : τ dx +∑F

∫F

[[un]]τnn ds = g1 ∀τ

Stability & Convergence:I Discrete inf-sup stabilityI Optimal error estimates

But:

I Saddle point system

, TDNNS (Tangential Displacement – Normal-Normal Stress) Page 5/29

Page 6: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Hybridized TDNNS Formulation

Normal-normal continuity of stresses is broken andreenforced facet-wise by Lagrange multipliers,these approximate normal displacements.

unσu

Benefits:I algebraically equivalent to previous system

I stresses local static condensationI condensed system is SPD

KU = F U =

[uun

]

, TDNNS (Tangential Displacement – Normal-Normal Stress) Page 6/29

Page 7: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Hybridized TDNNS Formulation

Normal-normal continuity of stresses is broken andreenforced facet-wise by Lagrange multipliers,these approximate normal displacements.

unσu

Benefits:I algebraically equivalent to previous systemI stresses local static condensationI condensed system is SPD

KU = F U =

[uun

], TDNNS (Tangential Displacement – Normal-Normal Stress) Page 6/29

Page 8: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Why use TDNNS?

Single framework, stable w.r.t.I volume locking (more later on)I shear locking

DG-like method, lives up to the motto

Relax as much as you can, but never lose stability!

, TDNNS (Tangential Displacement – Normal-Normal Stress) Page 7/29

Page 9: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Overview

TDNNS (Tangential Displacement – Normal-Normal Stress)

Motivation of TDNNS-FETI

TDNNS-FETI Method

Theory

Numerical Results

, Motivation of TDNNS-FETI Page 8/29

Page 10: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Motivation I – Solver

Astrid’s PhD thesis ’09

Additive Schwarz preconditioner for high order (hybridized) system

I lowest order block (direct)

I overlapping blocks associated to edges, facets, elements

I optimal in h and polynomial degree

But up to now no scalable lowest order TDNNS-solver available!

, Motivation of TDNNS-FETI Page 9/29

Page 11: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Motivation II – Symbolic Study

Victorita Dolean, DD20 plenary talk DD on PDE level

T. Cluzeau, V. Dolean, F. Nataf, and A. Quadrat ’12

two subdomains, Γ = symmetry axis

Ω Ω(1) (2)Γ

I scalar PDE −∆u = f

coupling pair (u, ∂u∂n )

Neumann-Neumann preconditioner is exact

I elasticity −div(σ(u)) = f

coupling pair (u,σn(u))

?

, Motivation of TDNNS-FETI Page 10/29

Page 12: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Motivation II – Symbolic Study

Victorita Dolean, DD20 plenary talk DD on PDE level

T. Cluzeau, V. Dolean, F. Nataf, and A. Quadrat ’12

two subdomains, Γ = symmetry axis

Ω Ω(1) (2)Γ

I scalar PDE −∆u = f

coupling pair (u, ∂u∂n )

Neumann-Neumann preconditioner is exact

I elasticity −div(σ(u)) = f

coupling pair (u,σn(u))

Neumann-Neumann preconditioner is NOT exact!

, Motivation of TDNNS-FETI Page 10/29

Page 13: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Motivation II – Symbolic Study

Victorita Dolean, DD20 plenary talk DD on PDE level

T. Cluzeau, V. Dolean, F. Nataf, and A. Quadrat ’12

two subdomains, Γ = symmetry axis

Ω Ω(1) (2)Γ

I scalar PDE −∆u = f

coupling pair (u, ∂u∂n )

Neumann-Neumann preconditioner is exact

I elasticity −div(σ(u)) = f

coupling pair

([ut

σnn(u)

],

[σnt(u)

un

])Neumann-Neumann preconditioner is exact

symbolic approachSmith factorizationOreMorphisms

, Motivation of TDNNS-FETI Page 10/29

Page 14: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Existing Work – FETI for mechanics

Compressible elasticity

I Farhat & Roux ’94 etc. – FETI (original)

I Farhat, Lesoinne, LeTallec, Pierson & Rixen ’01 – FETI-DP (original)

I Dostal, Horak & R. Kucera ’06 – TFETI

I Klawonn & Widlund ’06 – FETI-DP (3D coarse space)

I Klawonn, Rheinbach & Widlund ’08 – FETI-DP (2D, irregular interface)

Incompressible Stokes

I Li & Widlund ’06 – BDDC (primal pressure dofs, quasi-optimal)

I Kim & Lee ’10 – FETI-DP (no primal pressure dofs, suboptimal)

Almost incompressible elasticity

I Dohrmann & Widlund ’09 – OS (“full” coarse space)

I Dohrmann & Widlund ’09 – hybrid OS-IS (reduced coarse space)

I Pavarino, Widlund & Zampini ’10 – BDDC (reduced coarse space)

I Gippert, Rheinbach & Klawonn ’12 – FETI-DP unresolved incompressible inclusions

Your paper here& even more at this conference!

We won’t compare TDNNS-FETI with the above FETI(-DP) methodsbut show what one can do when one has chosen TDNNS as discretization.

, Motivation of TDNNS-FETI Page 11/29

Page 15: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Overview

TDNNS (Tangential Displacement – Normal-Normal Stress)

Motivation of TDNNS-FETI

TDNNS-FETI Method

Theory

Numerical Results

, TDNNS-FETI Method Page 12/29

Page 16: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

one-level (T)FETI for hybridized TDNNS

Saddle point formulationK(1) 0 B(1)>

. . ....

0 K(N) B(N)>

B(1) . . . B(N) 0

U(1)

...

U(N)

λ

=

F(1)

...

F(N)

0

4 multipliers per edge (2D)

Kernel property

ker(K(i)) = range(R(i)) rigid body modes

Elimination of U(i) by generalized inverse K(i)† AA[BK†B −GG> 0

] [λξ

]=

[de

]G := BR

U = K†(F− B>λ) + Rξ

Projection method

PQ := I−QG(G>QG)−1G>

, TDNNS-FETI Method Page 13/29

Page 17: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

One-level (T)FETI with scaled Dirichlet preconditioner

Solve (PCG) PQ>BK†B>λ = PQ

>d λ ∈ range(PQ)

Preconditioner PQ BDSB>D S = diag(S(i))

Yet to be specified:

I scalings in BD = [D(1)B(1)| . . . |D(N)B(N)]

I matrix Q

, TDNNS-FETI Method Page 14/29

Page 18: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Choice of Scalings – 2DScalings in BD

diagonal entry of D(i) at multiplier linking (i , j)

12

E (i)

E (i)+E (j)

K(i)diag,max

K(i)diag,max+K

(j)diag,max

multiplicity scaling coefficient scaling A stiffness scaling A

Choices of QI Q = II Q = M−1 = BDSB>DI (Qdiag)m,ij = min(E (i),E (j))

h(ij)H(ij) or using scaled stiffness entries

Assumption on degrees of freedome

e e1 2

t

∫ev · t ds 1

|e|

∫e(v · t)s ds |e| vn|e(e1) |e| vn|e(e2)

, TDNNS-FETI Method Page 15/29

Page 19: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Overview

TDNNS (Tangential Displacement – Normal-Normal Stress)

Motivation of TDNNS-FETI

TDNNS-FETI Method

Theory

Numerical Results

, Theory Page 16/29

Page 20: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Condition Number Estimate

Assumptions

I d = 2

I triangular mesh technical

I E|Ω(i) ≈ E (i) = const

I subdomains = compounds of coarse elements can be relaxed

I subdomain meshes quasi-uniform can be relaxed

Theorem (AP & CP)

For coefficient or stiffness scaling, and Q = M−1 or Q = Qdiag

κ(T)FETI ≤ C (1 + log(Hh ))2

C independent of H, h, and jumps in E .

, Theory Page 17/29

Page 21: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Discrete norms

Energy norm is equivalent to the DG-like (semi)norm

|v, vn|2H(ε,Ω,Th) :=∑T

(‖ε(v)‖2

L2(T )+ h−1

T ‖v · n− vn‖2L2(∂T )

)or (via Korn-type inequality, Brenner ’04)

|v, vn|2H1(Ω,Th) :=∑T

(|v|2

H1(T )+ h−1

T ‖v · n− vn‖2L2(∂T )

)“L2-norm”

‖v, vn‖2L2(Ω,T h) := ‖v‖2

L2(Ω) +∑T

h ‖vn‖2L2(∂T )

, Theory Page 18/29

Page 22: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Two Transformations

X

Y

nodal FETDNNS

(v, vn) v

Features

I preserve continuous functions, in particular rigid body motionsI H1-stable |X (v, vn)|H1(Ω) . |v, vn|H1(Ω,Th) |Y v|H1(Ω,Th) . |v|H1(Ω)

I L2-stable ‖X (v, vn)‖L2(Ω) . ‖v, vn‖L2(Ω,Th) ‖Y v‖L2(Ω,Th) . ‖v‖L2(Ω)

I . involves only shape-regularity constantsI also works subdomain-wise / patch-wise

, Theory Page 19/29

Page 23: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Main Idea of constructing v := X (v, vn)

average with neighbors

v = v

v = vt + vn n

|v, vn|2H1(Ω,Th) =∑T

|v|2H1(T ) + h−1T ‖v · n− vn‖2

L2(∂T )

, Theory Page 20/29

Page 24: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Lift of Existing Tools

Cut-off Estimate (Edge Lemma)

|ΘE(ij)(v, vn)|2H1(Ω(i),Th). (1 + log(H

(i)

h(i) ))2 ‖v, vn‖2H1(Ω(i))

Discrete Subdomain Extension

|E(i→j)(v, vn)|2H1(Ω(j),Th). |v, vn|2H1(Ω(i),Th)

‖E(i→j)(v, vn)‖2L2(Ω(j),Th)

. ‖v, vn‖2L2(Ω(i),Th)

Ω

ε(ij)

(i)Ω

(j)

, Theory Page 21/29

Page 25: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Overview

TDNNS (Tangential Displacement – Normal-Normal Stress)

Motivation of TDNNS-FETI

TDNNS-FETI Method

Theory

Numerical Results

, Numerical Results Page 22/29

Page 26: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

1) Compressible Case, Homogeneous Material

plane strain, ν = 0.3, E = 2 · 105 N/mm2

64 subdomains, multiplicity scaling, Q = I

ΓD

FETI TFETIH/h cond iter cond iter

2 15.37 22 3.24 154 19.82 28 5.34 208 25.00 34 8.43 25

16 30.03 38 11.84 2932 35.19 42 15.59 3364 40.65 47 19.65 36

168 coarse dofs 192 coarse dofs

0.1

1

10

100

1000

10000

1 10 100

TFETIFETI

H/hCPU

(sequential)

PCG tolerance 10−8 (relative)

, Numerical Results Page 23/29

Page 27: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

2) Compressible Case, Heterogeneous Material

ν = 0.3E1 = 101 N/mm2 E2 = 2 · 105 N/mm2

TFETI (similar for FETI)

ΓD

E

E

1

2

A

1

10

100

1000

10000

100000

1 10 100 1000

mult, Q=Icoeff, Q=M

coeff, Q=diagstiff, Q=diag

cond

H/h

0.1

1

10

100

1000

10000

1 10 100 1000

mult, Q=Icoeff, Q=M

coeff, Q=diagstiff, Q=diag

CPU

H/hA

, Numerical Results Page 24/29

Page 28: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Almost Incompressible Case – Stabilization

Consistent stabilization Astrid’s PhD thesis ’09

∑T

∫T

(divσ + f) · v dx +∑F

∫F

[[σnt ]] · vt ds = g2 ∀v

∑T

∫T

(D−1σ − ε(u)) : τ dx +∑F

∫Fτnn[[un]] ds +

+∑T

h2T

∫T

(divσ + f) · divτ dx = g1 ∀τ

In hybridized form penalizes volume changes: +λ

|T |

∣∣∣ ∫∂T

vn ds∣∣∣2

Stability & Convergence uniform for ν → 1/2

, Numerical Results Page 25/29

Page 29: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

3) Almost Incompressible Case

ν1 ∈ [0.3, 0.49999] ν2 = 0.3E1 = 101 N/mm2 E2 = 2 · 105 N/mm2

TFETI (similar for FETI)

ΓD

E

E

1

2 ν2

H/h = 8

A

1

10

100

1000

10000

100000

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

coeff, Q=diagstiff, Q=diagcoeff, Q=M

stiff, Q=M

cond

12 − ν1

1

10

100

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

coeff, Q=diagstiff, Q=diagcoeff, Q=M

stiff, Q=M

CPU

12 − ν1

A, Numerical Results Page 26/29

Page 30: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

4) Irregular Subdomains

ν = 0.3 E = 2 · 105 N/mm2

64 subdomains, multiplicity scaling, Q = I H/h ≈ 32

regular FETI TFETIcond iter cond iter

cont. P1 23.8 31 7.0 23TDNNS 35.2 42 15.6 33

METIS FETI TFETIcond iter cond iter

cont. P1 75.2 49 34.1 43TDNNS 113.6 67 90.7 64

, Numerical Results Page 27/29

Page 31: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

Summary

One-level (T)FETI method for hybridized TDNNS discretization

I Formulation, choice of scalings (2D)I Analysis for 2D compressible caseI Numerical results reveal good parameter choices for ν → 1/2

Benefits

I Very simple coarse space (RBM)I Usual robustness propertiesI Additional robustness for ν → 1/2

Ongoing work

I Analysis of incompressible caseI 3DI Deluxe scalingI Anisotropic domains

, Numerical Results Page 28/29

Page 32: A TDNNS-FETI method for compressible [0.5ex] and almost ... · reenforcedfacet-wiseby Lagrange multipliers, these approximatenormal displacements. u ˙ u n Bene ts: Ialgebraically

Johann Radon Institute for Computational and Applied Mathematics

References

A. Pechstein & C. PechsteinA FETI method for a TDNNS discretization of plane elasticitywww.numa.uni-linz.ac.at/publications/List/2013/2013-05.pdf

Astrid Sinwel. A New Family of Mixed Finite Elements for Elasticitywww.numa.uni-linz.ac.at/Teaching/PhD/Finished/sinwel-diss.pdf

A. Pechstein & J. Schoberl. Tangential-displacement and normal-normalstress continuous mixed finite elements for elasticityMath. Models Methods Appl. Sci. 21(8):1761–1782, 2011

A. Pechstein & J. Schoberl. Anisotropic mixed finite elements for elasticityInternat. J. Numer. Methods Engrg. 90(2):196–217, 2012

S. C. Brenner. Korn’s inequalities for piecewise H1 vector fieldsSIAM J. Numer. Anal. 41(1):306–324, 2003

Thanks for your attention!

, Numerical Results Page 29/29