A Bonanza of Frontiers

19
A Bonanza of Frontiers fxt kitp 20mar17

Transcript of A Bonanza of Frontiers

A Bonanza of Frontiers

fxt kitp 20mar17

0

125

250

375

500

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017

Pu

blic

atio

ns w

ith

“m

assiv

e s

tar”

in

th

e t

itle “massive star” growth rate since 2002 ~ 7%

AAS Journals growth rate since 2002 ~ 3.5%

ensembles of 1d stellar models

Farmer et al 2016 Sukhbold et al 2016

Yoon et al 2017

Ertl et al 2016

Fields et al 2017 Petermann et al 2017

Property 15M 20M

M = 0 M = 0 M = 0 M

Hecore [M ]a,b 2.822.822.79 2.772.78

2.72 4.674.704.59 4.

Ccore [M ] 2.512.582.49 2.442.53

2.43 4.194.754.04 4.

Ocore [M ] 1.411.431.35 1.401.42

1.32 1.542.471.43 1.

Sicore [M ] 1.151.381.02 1.151.39

1.08 1.381.651.30 1.

0 10 20 30 40

0

10

20

30

neutron number

pro

ton n

um

ber

22 isotopes

204 isotopes

160 isotopes

127 isotopes

79 isotopesHelium

Lithium

BerylliumBoron

Hydrogen

CarbonNitrogen

OxygenFluorine

NeonSodium

MagnesiumAluminum

SiliconPhosphorus

SulfurChlorine

ArgonPotassium

CalciumScandium

TitaniumVanadium

ChromiumManganese

IronCobalt

NickelCopper

Zinc4 masses: 15, 20, 25, 30 M⊙

5 reaction networks

5 mass resolutions

with/without mass loss

Pre-MS to CC

Farmer et al 2016

0.1

0.05

0.02

0.01

0.005

∆M

max

[M⊙]

Mzams=15.0M⊙

2.795

2.800

2.805

2.810

2.815

Mzams=20.0M⊙

4.600

4.625

4.650

4.675

4.700Mzams=25.0M⊙

6.800

6.900

7.000

7.100

7.200

Mzams=30.0M⊙

9.300

9.450

9.600

9.750

He c

ore[M

⊙]

22 79 127 160 204

Net size

0.1

0.05

0.02

0.01

0.005

∆M

max

[M⊙]

2.730

2.740

2.750

2.760

2.770

22 79 127 160 204

Net size

4.530

4.545

4.560

4.575

4.590

22 79 127 160 204

Net size

6.540

6.570

6.600

6.630

6.660

22 79 127 160 204

Net size

8.640

8.670

8.700

8.730

8.760

He c

ore[M

⊙]

no mass loss

with mass lossmeasured between X(1H) < 0.01, X(4He) > 0.1 when at the base of the giant branch

Farmer et al 2016

The step function with mass resolution is due to layered convection/semiconvection penetrating (or not) the H-burning core or H-burning shell. If it penetrates, fresh H fuel increases the He-core mass.

How do the properties of massive stars, evolved from the

main-sequence, vary with respect to the composite

experimental uncertainties in the reaction rates?

∑ 𝜹(reaction rates) = ?

STARLIB is the first (and only) tool offering a

Monte Carlo / Bayesian reaction rate probability density

due to experimental uncertainties.

0.0

6.8 7.0 7.2 7.4 7.6 7.8

Reaction Rate (x10-15 cm3 mole-1 s-1)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pro

ba

bili

ty (

arb

itra

ry s

ca

le) T9=0.016

3He(α,γ)7Bemu= -32.55

sig=0.02389

Iliadis et al 2016, 2017

Sallaska et al 2013

DeBoer et al 2017

10−1 100 101

0.5

1

1.5

2

Temperature (GK)

Rea

ctio

nR

ate

Ratio

DeBoer et al 2017

Koonz 2002

12C(α,γ)16O

Angulo et al (NACRE) 1999

1,000 Monte Carlo 15 M⊙

MESA + STARLIB models

varying ~500 rates

−4 −2 0 2 4

log (Ratesamp /Ratemed)/ log f.u.

0.00

0.15

0.30

0.45

0.60

Xc(1

2C)

12C(α,γ)16O

Solar Metallicity @ Helium Depletion

Fields et al 2017

1,000 Monte Carlo 15 M⊙

MESA + STARLIB models

varying ~500 rates

−4 −2 0 2 4

log (Ratesamp / Ratemed)/ log f.u.

M /

R |

m(=

2.5

M⊙

)C

om

pa

ctn

ess

0.04

0.06

0.08

0.10

0.12

0.14ξ

2.5

12C(α, γ )16O

Solar Metallicity @ Oxygen Depletion

Fields et al 2017

Petermann et al 2017

0.1

0.2

0.3

0.4

0.5

0.6

com

pactn

ess

Horiuchi et al. (2014)

Ugliano et al. (2012)

OʼConnor & Ott (2011)

Kochanek (2015)

Petermann et al 2017, low res, mdot=0

Petermann et al 2017, high res, mdot=0

Couch & OʼConnor (2014)Nakamura et al. (2015)

Sukhbold et al. (2014, 2016)

10 12 14 16 18 20 22 24 26 28

ZAMS mass

Liebendörfer+2001

Thompson+2003

Sumiyoshi+2005

Buras+2006

Marek+2006,2009

Müller+2012ab,

Takiwaki+2012

Bruenn+2013

Ott+2013

Dolence+2015

Lentz+2015

Melson+2015

Müller2015

Pan+2015

Suwa+2016

1D, no explosion

2D, no explosion

3D, no explosion

1D, explosion

2D, explosion

3D, explosion

some developing trends

107

108

109

1010

109

1010

log10ρ

center ( g cm

-3)

log

10 T

ce

nte

r (K

)

Si-ign

O-ign

εF/kT~4

Rapid

ele

ctr

on c

aptu

re

Fe-He Photodisintegration

15 M⊙

1×1016

1×1018

1×1020

1×1022

1×1024

0.10 1.00 10.00

βplasmaphoto

pair

- thick

- thin

νe

νe

(MeV

dR

/dE

−1

cm−

3s−

1)

(MeV)

1×1024

1×1026

1×1028

1×1030

1×1032

0.10 1.00 10.00

βplasmaphoto

pair - thick

- thin

νe

νe

Patton et al 2016

Yoshida et al 2016

Misch & Fuller 2017

Patton et al 2017

Pre-SN 𝜈

detection

Grefenstett et al 2017

3D Element Factories

Cas A

NuSTAR +

Chandra

Timmes & Couch 2016

Onse

t o

f C

ore

-Colla

pse

End o

f n

ucl e

osyn

thesi

s

En

d o

f E

xp

losio

n

Pre-MS

3D FLASH branch

MESA

1D MESA branch

Oxygen

Shell Burning

Map MESA

into FLASH

Stable Isotopes:

Fe, Si, O, C

Objects:

Cas A, SN87A

Observables

Radioactivities: 56Ni, 57Ni, 60Fe, 55Fe 56Co, 57Co, 60Co, 44Ti 26Al

isotopesproject100

First 3D simulation of the final minutes of iron core growth,

up to and including core-collapse.

Couch et al 2015

A 21 isotope 15 M⊙ MESA model at shell Si-burning

was mapped into a 21 isotope 3D FLASH initial model.

The stronger turbulence from a non-spherical progenitor

enhances the (diagnostic) explosion energy.

Couch et al 2015

Angle-average

Initial Model

3D Initial ModelSi-shell accreted

through shock

0.0 0.1 0.2 0.3 0.4

t− tbounce [s]

0.00

0.05

0.10

0.15

Eexp

[B]

Initial MESA

155 s 3D FLASH

Final 3D FLASH

Final MESA

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Radius [ 103 km]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

vcon

[100

km

s−

1]

this is average vcon

.

peak vcon

are

~5 times larger

Couch et al 2015

Jones et al 2017

Müller et al 2016

Nishimura (⻄西村信哉) et al 2017

0 10 20 30 40

neutron number

0

5

10

15

20

25

30p

roto

nn

um

be

r

Helium

CarbonNitrogen

Oxygen

Neon

MagnesiumAluminum

Silicon

SulfurChlorine

ArgonPotassium

CalciumScandium

TitaniumVanadium

ChromiumManganese

IronCobalt

NickelCopper

Zinc

204 isotopes - MESA Standard

21 isotopes - Couch et al. 2015

126 isotopes - 3D Stellar Evolution

isotopesproject100

comments and discussion