#754 v-3103 Spreader & Lifting 60 Degree

19
LIFTING DESIGN Unit: E -21221 SPREADER PIPE DESIGN Reference Drawing: D018-DWG-011A Lifting Arrangement Drawing PROPERTIES OF SPREADER Type of spreader : Pipe Size : 4" Sch.40 Pipe material : A 106 GR B Minimum specified yield strength, Fy = 241.32 N/mm2 Modulus of elasticity, E = 200000 N/mm2 Pipe OD, D = 114.30 mm Pipe thickness, t = 5.30 mm Pipe ID, d = 103.70 mm Cross sectional area, A = 1814.90 mm2 Moment of inertia, I = 2.70E+06 mm4 Setion modulus, Z = 4.72E+04 mm3 Radius of gyration, r = 38.55 mm Length of pipe, l = 3000 mm Effective end factor, K = 1.0 Slenderness ratio K*l/r = 77.82 Allowable compressive stress - AISC (for 0 < Kl/r < Cc) [1 - (K*l/r)²/(2*Cc²)]*Fy Fc = -------------------------------- 105.35 N/mm2 5/3+3(K*l/r)/(8*Cc)-(K*l/r)^3/(8*Cc^3) where, Cc = \/ (2*pi^2*E/Fy ) = 127.90 COMPRESSIVE STRESS IN PIPE Sling angle to horizontal, ß = 60 Deg. Whole Structural Weight : 4032 kg Design Lifting Factor : 2.00 Design sling force, Fs = 22829 N Compressive force on pipe, Fp = Fs*Cos ß = 11415 N Eccentric moment, Me = 1793789 Nmm Eccentric e = 157.15 Compressive stress due to Fp, Sp = Fp / A = 6.29 N/mm2 Bending stress due to Me, Sb = Me / Z = 38.01 N/mm2 Stress interaction ratio, Sp/Fc +Cm*Sb/[(1-Sp/Fe')*0.6*Fy] = 0.332 < where, Fe' = 12*pi^2*E/(23*(K*l/r)^2) = 170 N/mm2 Cm = 1

description

Lifting lug design

Transcript of #754 v-3103 Spreader & Lifting 60 Degree

LIFTING DESIGN Unit: E -21221 SPREADER PIPE DESIGN Reference Drawing: D018-DWG-011A Lifting Arrangement DrawingPROPERTIES OF SPREADER

Type of spreader Size Pipe material Minimum specified yield strength, Modulus of elasticity, Pipe OD, Pipe thickness, Pipe ID, Cross sectional area, Moment of inertia, Setion modulus, Radius of gyration, Length of pipe, Effective end factor, Slenderness ratio Allowable compressive stress - AISC (for 0 < Kl/r < Cc)

: Pipe : 4" Sch.40 : A 106 GR B Fy = 241.32 N/mm2 E= 200000 N/mm2 D= 114.30 mm t= 5.30 mm d= 103.70 mm A= 1814.90 mm2 I = 2.70E+06 mm4 Z = 4.72E+04 mm3 r= 38.55 mm l= 3000 mm K= 1.0 K*l/r = 77.82

[1 - (K*l/r)/(2*Cc)]*Fy Fc = ---------------------------------------------- = 5/3+3(K*l/r)/(8*Cc)-(K*l/r)^3/(8*Cc^3) where,COMPRESSIVE STRESS IN PIPE

105.35 N/mm2

Cc = \/ (2*pi^2*E/Fy ) =

127.90

Sling angle to horizontal, Whole Structural Weight Design Lifting Factor Design sling force, Compressive force on pipe, Eccentric moment, Eccentric Compressive stress due to Fp, Bending stress due to Me, Stress interaction ratio, where,

= : : Fs = Fp = Fs*Cos = Me = e= Sp = Fp / A = Sb = Me / Z = Sp/Fc +Cm*Sb/[(1-Sp/Fe')*0.6*Fy] = Fe' = 12*pi^2*E/(23*(K*l/r)^2) = Cm =

60 4032 2.00 22829 11415 1793789 157.15 6.29 38.01 0.332

Deg. kg N N Nmm N/mm2 N/mm2 < 1.00 OK!

170 N/mm2 1

LIFTING LUG DESIGN AT COLUMNYZ Y

Material Minimum specified yield strength, Structural Lifting Weight Design Lift Impact Factor PAD Eye Impact Factor Lift Angle Vertical Force at Lug 9.81 x I x W/4 Sling Force at Lug Fv/Cos b Longitudinal Force at Lug Fv x Tanb Skew Force 0.05 x FsFv Fs b

: Sy = W I Ieb = = = = =

A 36 248.21 N/mm24032 kg 2 2 30 Deg

Fv

19771 N

Fs

=

22829 N

Fx

=

11415 N

Fz

=

1141 NFv

Fz Fx B Radius R C Diameter D T1

A

B

C

A

T2 H E E

L1

Lug Dimensions R D L1 H T1 T2 = = = = = = 50 28 150 65 16 16 mm mm mm mm mm mm

Pin Diameter of Shackle used for Lifting

Dp

= 25.4 mm (6.5 Tonne Shackle)

STRESSES IN LIFTING LUG Tensile Stress across A-A Fs/((2 x R - D) x T1)

ft

=

19.82 N/mm^2

SATISFACTORYShear Stress across B-B & C-C Fs/(2 x ((R^2)-(D/2)^2)^0.5 x T1)