4g3 01 Turner Ashtonbrook

download 4g3 01 Turner Ashtonbrook

of 73

Transcript of 4g3 01 Turner Ashtonbrook

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    1/73

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    2/73

    2

    Our G-enealogy 

    • Brief history of cellular wireless telephony – Radio technology: TDMA, CDMA, OFDMA

     – Mobile core network architectures

    • Demographics & market trends today

     – 3.5G, WiMAX, LTE & 4G migration paths

    • Implications for the next 2-5 years

    How the history o f cel lu lar technology helps usunderstand 4G technology and business models

    and their l ikely impact on wireless b roadband

    Google

    “3G Tutorial” 

    “4G Tutorial” 

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    3/73

    3

    Outrageous ideas

    • 5 GHz spectrum better than 700 MHz

    • 2020: LTE* >80%; WiMAX*

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    4/73

    4

    Source: ITU World ICT Indicators, June 2008

    Mobiles overtake fixed

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    5/73

    5

    Mobile Generations

    G Summary Data Rates1 Analog Typical 2.4 Kbps; max 22 Kbps

    2 Digital – TDMA, CDMA 9.6 - 14.4 Kbps (circuit data)

    2.5GPRS – mux packets in

    voice timeslots 15 - 40 Kbps

    3Improved modulation,using CDMA variants

    50 – 144 Kbps (1xRTT);200 – 384 Kbps (UMTS);500 Kbps – 2.4 Mbps (EVDO)

    3.5 More modulation tweaks2 –14 Mbps (HSPA), then 28 Mbps& 42/84 Mbps future evolution

    4New modulation (OFDMA);Multi-path (MIMO); All IP

    LTE: potentially >100 Mbps withadequate spectrum (20 MHz)

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    6/73

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    7/73

    8

    Origins of Wireless Communications

    • 1864: James Clark Maxwell – Predicts existence of radio waves

    • 1886: Heinrich Rudolph Hertz – Demonstrates radio waves

    • 1895-1901: Guglielmo Marconi – Demonstrates wireless communications over

    increasing distances

    • Also in the 1890s – Nikola Tesla, Alexander Stepanovich Popov,Jagdish Chandra Bose and others, demonstrateforms of wireless communications

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    8/73

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    9/73

    10

    1

    2

    3

    4

    5

    6

    7

    1

    2

    3

    4

    5

    6

    7

    572

    2

    11

    2

    3

    4

    5

    6

    7

    3

    Cellular Mobile Telephony

    Antenna diversity Cellular concept

    ● Bell Labs (1957 & 1960)

    Frequency reuse

    ● typically every 7 cells

    Handoff as caller moves

    Modified CO switch● HLR, paging, handoffs

    Sectors improve reuse● every 3 cells possible

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    10/73

    11

    First Generation (nearly all retired)

    • Advanced Mobile Phone Service (AMPS) – US trials 1978; deployed in Japan (’79) & US (’83) 

     – 800 MHz; two 20 MHz bands; TIA-553

    • Nordic Mobile Telephony (NMT) – Sweden, Norway, Demark & Finland

     – Launched 1981

     – 450 MHz; later at 900 MHz (NMT900)

    • Total Access Communications System (TACS)

     – British design; similar to AMPS; deployed 1985

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    11/73

    12

    2nd Generation – digital systems

    • Leverage technology to increase capacity – Speech compression; digital signal processing

    • Utilize/extend ―Intelligent Network‖ concepts 

     – Improve fraud prevention; Add new services• Wide diversity of 2G systems

     – IS-54/ IS-136 Digital AMPS; PDC (Japan)

     – DECT and PHS; iDEN

     – IS-95 CDMA (cdmaOne)

     – GSM

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    12/73

    13

    2G “CDMA” (cdmaOne) 

    • Code Division Multiple Access – all users share same frequency band

     – discussed in detail later as CDMA is basis for 3G

    • Qualcomm demo in 1989

     – claimed improved capacity & simplified planning

    • First deployment in Hong Kong late 1994

    • Major success in Korea (1M subs by 1996)

    • Adopted by Verizon and Sprint in US

    • Easy migration to 3G (same modulation)

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    13/73

    14

    GSM – Global System for Mobile

    • Originally ―Groupe Spécial Mobile ‖  –  joint European effort beginning 1982

     – Focus: seamless roaming all Europe

    • Services launched 1991 – time division multiple access (8 users per 200KHz) – 900 MHz band; later 1800 MHz; then 850/1900 MHz

    • GSM – dominant world standard today

     – well defined interfaces; many competitors; lowestcost to deploy

     – network effect took hold in late 1990s

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    14/73

    15

    GSM Dominant Today

    • GSM+3GSM used by 88% of subscribers worldwide• Asia leads with 42% of all mobile subscriptions

     – AT&T and T-Mobile use GSM/3GSM in US today

    Source: Wireless Intelligence / GSM Association

    GSM Subscribers

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    15/73

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    16/73

    17

    1G, 2G, 3G Multi-Access Technologies

    Courtesy of Petri Possi, UMTS World 

    4G and future wireless systems optimize acombination of frequency, time and coding

    e.g. OFDMA & SC-FDMA (discussed later)

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    17/73

    18

    2G & 3G – Code Division Multiple Access

    • Spread spectrum modulation – originally developed for the military

     – resists jamming and many kinds of interference

     – coded modulation hidden from those w/o the code

    • All users share same (large) block of spectrum

     – one for one frequency reuse

     – soft handoffs possible

    • All 3G radio standards based on CDMA – CDMA2000, W-CDMA and TD-SCDMA

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    18/73

    19

    Courtesy of Suresh Goyal & Rich Howard 

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    19/73

    20

    The 3G Vision

    • Universal global roaming – Sought 1 standard (not 7), (but got 3:

    3GSM, CDMA 2000 & TD-SCDMA)

    • Increased data rates

    • Multimedia (voice, data & video)• Increased capacity (more spectrally efficient)

    • Data-centric architecture (ATM at first, later IP)

    • But deployment took much longer than expected – No killer data app; new spectrum costly; telecom bubble

    burst; much of the vision was vendor-driven

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    20/73

    21

    3G Radio technology today

    • CDMA 2000 – Multi Carrier CDMA – Evolution of IS-95 CDMA; but now a dead end

    • UMTS (W-CDMA, HSPA)  – Direct Spread CDMA

     –Defined by 3GPP

    • TD-SCDMA – Time Division Synchronous CDMA

     – Defined by Chinese Academy of TelecommunicationsTechnology under the Ministry of Information Industry

    Paired spectrum bands 

    Single spectral band with time division duplexing 

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    21/73

    22

    Why CDMA 2000 lost out

    • Had better migration story from 2G to 3G – Evolution from original Qualcomm CDMA (IS-95)

     – cdmaOne operators didn’t need additional spectrum 

    • Higher data rates than UMTS, at least at first• Couldn’t compete with GSM’s critical mass 

     – Last straw when Verizon Wireless selected 3GPP’s

    Long Term Evolution (LTE) for their 4G network

     – Verizon selection 11/07 – Qualcomm abandons further development 11/08

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    22/73

    23

    Japan

    USA

    3GPP (3rd Generation Partnership Project)

    • Partnership of 6 regional standards groups, whichtranslate 3GPP specifications to regional standards

    • Controls evolution of GSM, 3GSM (UMTS, WCDMA, HSPA) & LTE

    23

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    23/73

    24

    UMTS (3GSM) is market leader

    • GSM evolution: W-CDMA, HSDPA, HSPA, +… – leverages GSM’s dominant position 

    • Legally mandated in Europe and elsewhere

    • Requires substantial new spectrum – 5 MHz each way (symmetric) at a minimum

    • Slow start (was behind CDMA 2000), but now theaccepted leader

     – Network effect built on GSM’s >80% market share 

     – Surely LTE will benefit in the same fashion… 

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    24/73

    25

    TD-SCDMA

    (Time division synchronous CDMA)

    • Chinese development

     – IPR bargaining tool with West? Late to market, butbig deployment plans

    • Single spectral band – unpaired spectrum; as little as 1.6 MHz; time

    division duplex (TDD) with high spectral efficiency;good match for asymmetrical traffic!

    • Power amplifiers must be very linear – relatively hard to meet specifications

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    25/73

    26

    China 3G

    • Largest mobile market in world (630 M subs) – Largest population in world (1.3 billion)

    • Home-brew 3G standard: TD-SCDMA

     –3G licenses were delayed until TD-SCDMA worked – 2008 trials: 10 cities, 15K BSs & 60K handsets

    • 3G granted January 2009

     – China Mobile: TD-SCDMA

     – China Unicom: 3GSM (UMTS)

     – China Telecom: CDMA 2000

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    26/73

    27

    3G Adoption – DoCoMo Japan

    Potential to

    discontinue

    2G services

    in 2010 … 

    2G: mova

    3G: FOMA

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    27/73

    28

    3G Subscribers (2Q 2008)

    • 18% on 3G; 82% on 2G; 0.01% on 1G• EU & US 3G penetration approaching 30%

    • US penetration rate soaring

    Source: comScore MobiLens

    3-month averagesending June 2008

    & June 2007

     All mobile

    subscribers

    ages 13+

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    28/73

    29

    3G data-only subscribers

    • Soaring adoption of 3G ―USB Data Modems‖  – 92% of all 3G data bytes in Finland in 2H07

    • Informa on EU 3G devices, May 2008

     – 101.5M 3G devices:64 M handsets, 37M 3G data modems

    • In-Stat/ ABI Research

     – In-Stat: 5M cellular modems in 2006

     – ABI Research 300% growth in 2007, i.e. 20M?

    Enormous growth, from a relatively small base… 

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    29/73

    30

    Diverse Mobile Wireless Spectrum

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    30/73

    31

    Wireless Migration

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    31/73

    32

       W   i  r

      e   l  e  s  s  c  a  p  a  c   i   t  y   /

       t   h  r  o  u  g   h  p  u   t

    1970 1980 1990 2000 2010

    First cell

    phones

     AMPS

    GSM

    CDMA

    Wi-Fi

    WiMAX

    LTE

    UMTS/HSPA2G

    3G

    4G

    OFDM

    →OFDMAMIMO

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    32/73

    33

    ITU-T Framework

    3GPP  – WWAN (wireless wide

    area network)

    IEEE 802.16  – WMAN (wirelessmetropolitan area network)

    IEEE 802.11  – WLAN (wirelesslocal area network)

    ITU-T  – United Nationstelecommunications standards

    organization Accepts detailed standards

    contributions from 3GPP, IEEEand other groups

    Pervasive connectivityWLAN - WMAN - WWAN

    http://www.itu.int/home/index.htmlhttp://www.itu.int/home/index.htmlhttp://www.phonescoop.com/news/item.php?n=902

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    33/73

    34

    ITU Mobile Telecommunications

    • IMT-2000 – Global standard for third generation (3G) wireless

     – Detailed specifications from 3GPP, 3GPP2, ETSI and others

    • IMT-Advanced – New communications framework: deployment ~2010 to 2015

     – Data rates to reach around 100 Mbps for high mobility and1 Gbps for nomadic networks (i.e. WLANs)

     – High mobility case via either or both evolved LTE & WiMAX

     – 802.11ac and 802.11adaddressing the nomadic case

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    34/73

    35

    LTE highlights

    • Sophisticated multiple access schemes – DL: OFDMA with Cyclic Prefix (CP)

     – UL: Single Carrier FDMA (SC-FDMA) with CP

    • Adaptive modulation and coding

     – QPSK, 16QAM, and 64QAM

     – 1/3 coding rate, two 8-state constituent encoders,and a contention-free internal interleaver

    • Advanced MIMO spatial multiplexing – (2 or 4) x (2 or 4) downlink and uplink

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    35/73

    36

    4G Technology – OFDMA

    • Orthogonal Frequency Division Multiple Access – Supercedes CDMA used in all 3G variants

    • OFDMA = Orthogonal Frequency DivisionMultiplexing (OFDM) plus statistical multiplexing

     – Optimization of time, frequency & code multiplexing

    • OFDM already deployed in 802.11a & 802.11g

     – Took Wi-Fi from 11 Mbps to 54 Mbps & beyond

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    36/73

    37

    Orthogonal Frequency Division

    Multiplexing

     – Many closely-spaced sub-carriers, chosen to be orthogonal,thus eliminating inter-carrier interference

     – Varies bits per sub-carrier based on instantaneous receivedpower

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    37/73

    38

    Statistical Multiplexing (in OFDMA)

    • Dynamically allocate user data to sub-carriers basedon instantaneous data rates and varying sub-carriercapacities

    • Highly efficient use of spectrum

    • Robust against fading, e.g. for mobile operation

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    38/73

    39

    FDMA vs. OFDMA

    • OFDMA more frequency efficient• Dynamically map traffic to frequencies

    based on their instantaneousthroughput

    FDMA

    ChannelGuardband

    OFDMA

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    39/73

    40

    4G Technology - MIMO

    Multiple Input Multiple Output smart antenna technology Multiple paths improve link reliability and increase

    spectral efficiency (bps per Hz), range and directionality

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    40/73

    41

    Municipal Multipath Environment

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    41/73

    42

    SDMA = Smart Antenna Technologies

    • Beamforming – Use multiple-antennas to

    spatially shape the beam

    • Spatial Multiplexing a.k.a.Collaborative MIMO – Multiple streams transmitted

     – Multi-antenna receiversseparate the streams toachieve higher throughput

     – On uplink, multiple single-antenna stations can transmitsimultaneously

    • Space-Time Codes – Transmit diversity such as

    Alamouti code reduces fading

    2x2 Collaborative MIMO

    give 2x peak data rate bytransmitting two datastreams

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    42/73

    43

    4G Technology – SC-FDMA

    • Single carrier multiple access – Used for LTE uplinks

     – Being considered for 802.16m uplink

    • Similar structure and performance to OFDMA

     – Single carrier modulation with DFT-spreadorthogonal frequency multiplexing and FDequalization

    • Lower Peak to Average Power Ratio (PAPR) – Improves cell-edge performance

     – Transmit efficiency conserves handset battery life

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    43/73

    44

    Key Features of WiMAX and LTE

    • OFDMA (Orthogonal Frequency Division Multiple Access)

    • Users are allocated a slice in time and frequency

    • Flexible, dynamic per user resource allocation

    • Base station scheduler for uplink and downlink resource allocation – Resource allocation information conveyed on a frame‐by frame basis

    • Support for TDD (time division duplex) and FDD (frequency division

    duplex)

    DLUL

    DL

    UL

    FDD

    Paired channels

    TDD: single frequency channel for uplink and downlink

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    44/73

    45

    3G/4G Comparison

    Peak Data Rate (Mbps) Access time

    (msec)Downlink Uplink

    HSPA (today) 14 Mbps 2 Mbps 50-250 msec

    HSPA (Release 7) MIMO 2x2 28 Mbps 11.6 Mbps 50-250 msec

    HSPA + (MIMO, 64QAMDownlink)

    42 Mbps 11.6 Mbps 50-250 msec

    WiMAX Release 1.0 TDD (2:1UL/DL ratio), 10 MHz channel

    40 Mbps 10 Mbps 40 msec

    LTE (Release 8), 5+5 MHz

    channel

    43.2 Mbps 21.6 Mbps 30 msec

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    45/73

    46

    WiMAX vs. LTE

    • Commonalities – IP-based

     – OFDMA and MIMO

     – Similar data rates and channel widths

    • Differences – Carriers are able to set requirements for LTE

    through organizations like NGMN and LSTI, butcannot do this as easily at the IEEE-based 802.16

     – LTE backhaul is, at least partially, designed tosupport legacy services while WiMAX assumesgreenfield deployments

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    46/73

    47

    Commercial Issues

    LTE

    • Deployments likelyslower than projected

    But

    • Eventual migration pathfor GSM/3GSM, i.e. for >80% share

    • Will be lowest cost &dominant in 2020

    WiMAX

    • 2-3 year lead, likelymaintained for years

    • Dedicated spectrum inmany countries

    But

    • Likely < 15% share by

    2020 & thus more costly

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    47/73

    48

    3G Partnership Project

    Defines migration GSM to UMTS/ 3GSM to LTE

    Release

    Specs

    complete

    First

    deployed Major new features defined

    98 1998 Last purely 2G GSM release

    99 1Q 2000 2003 W-CDMA air interface

    4 2Q 2001 2004 Softswitching IP in core network

    5 1Q 2002 2006 HSDPA & IP Multimedia System (IMS)

    6 4Q 2004 2007 HSUPA, MBMS, GAN, PoC & WLAN integration

    7 4Q 2007 future HSPA+, Better latency & QoS for VoIP

    8 4Q 2008 future LTE, All-IP

    W-CDMA  – Wideband CDMA modulationHSxPA  – High Speed (Download/Upload) Packet Access

    MBMS – Multimedia Broadcast Multicast Service

    GAN – Generic Access Network

    PoC – Push-to-talk over Cellular

    LTE – Long Term Evolution, a new air interface based on OFDM modulation

    *

    * Rush job?

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    48/73

    49

    Core Network Architectures

    • Two widely deployed architectures today• 3GPP evolved from GSM-MAP

     – Used by GSM & 3GSM operators (88% of subs globally)

     – ―Mobile Application Part‖ defines signaling for mobility,authentication, etc.

    • 3GPP2 evolved from ANSI-41 MAP – ANSI-41 used with AMPS, TDMA & CDMA 2000

     – GAIT (GSM ANSI Interoperability Team) allowedinteroperation, i.e., roaming

    • Evolving to common ―all IP‖ vision based on 3GPP 

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    49/73

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    50/73

    51

    Separation of Signaling & Transport

    • Like PSTN, 2G mobile networks have one networkplane for voice circuits and another network plane forsignaling

    • Some elements reside only in the signaling plane

     – HLR, VLR, SMS Center, … 

    Transport Plane (Voice)

    Signaling Plane (SS7)MSCHLR

    VLRMSC

    SMS-SC

    MSC

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    51/73

    52

    Signaling in Core Network

    • Based on SS7 – ISUP and specific Application Parts

    • GSM MAP and ANSI-41 services

     – mobility, call-handling, O&M, authentication,supplementary services, SMS, … 

    • Location registers for mobility management

     – HLR: home location register has permanent data

     – VLR: visitor location register – local copy forroamers

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    52/73

    53

    PSTN-to-Mobile Call

    (STP)

    (SCP)

    PSTNPLMN

    (SSP)(SSP)BSSMS

    PLMN(Home)(Visitor)

    (STP)

    HLR

    GMSC

    (SSP)

    VMSC

    VLR

    IAM

    6

    Where is the subscriber? 

    Routing Info 

    3 Provide Roaming 

    SCP

    1

    IAM

    514 581 ...

    ISUP

    MAP/ IS41 (over TCAP)

    Signaling

    over SS7 

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    53/73

    54

    GSM 2G Architecture

    BSS Base Stat ion System

    BTS Base Transceiver Station

    BSC Base Station Controller

    MS Mobile Station

    NSS Netwo rk Sub-System

    MSC Mobile-service Switching Controller

    VLR Visitor Location Register

    HLR Home Location Register

    AuC Authentication Server

    GMSC Gateway MSC

    GSM Global System for Mobi le comm unicat ion

    SS7BTS

    BSCMSC

    VLR

    HLRAuC

    GMSC

    BSS

    PSTN

    NSS

    A

    E

    C

    D

    PSTNAbis

    B

    H

    MS

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    54/73

    55

    2.5G Architectural Detail

    SS7BTS

    BSCMSC

    VLR

    HLRAuC

    GMSC

    BSS

    PSTN

    NSS

    A

    E

    C

    D

    PSTNAbis

    B

    H

    MS

    BSS Base Stat ion System

    BTS Base Transceiver Station

    BSC Base Station Controller

    NSS Networ k Sub-System

    MSC Mobile-service Switching Controller

    VLR Visitor Location Register

    HLR Home Location Register

    AuC Authentication Server

    GMSC Gateway MSC

    SGSN Serving GPRS Support Node

    GGSN Gateway GPRS Support Node

    GPRS General Packet Radio Service

    IP

    2G+ MS (voice&data)

    PSDNGi

    SGSN

    Gr

    Gb

    Gs

    GGSN

    Gc

    Gn

    2G MS (voice only)

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    55/73

    56

    3G rel99 Architecture (UMTS)

    SS7

    IP

    BTS

    BSCMSC

    VLR

    HLRAuC

    GMSC

    BSS

    SGSN GGSN

    PSTN

    PSDN

    CN

    CD

    GcGr

    Gn Gi

    Abis

    Gs

    B

    H

    BSS Base Stat ion System

    BTS Base Transceiver Station

    BSC Base Station Controller

    RNS Radio Network System

    RNC Radio Network Controller

    CN Core Network

    MSC Mobile-service Switching Controller

    VLR Visitor Location Register

    HLR Home Location Register

    AuC Authentication Server

    GMSC Gateway MSC

    SGSN Serving GPRS Support Node

    GGSN Gateway GPRS Support Node

    AE PSTN

    2G MS (voice only)

    2G+ MS (voice & data)

    UMTS Universal Mobile Telecommunication System

    Gb

    3G UE (voice & data)

    Node B

    RNC

    RNS

    Iub

    IuCS

    ATM

    IuPS

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    56/73

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    57/73

    58

    3GPP rel5 ― IP Multimedia 

    Gb/IuPS

    A/IuCS

    SS7

    IP/ATM

    BTS

    BSCMSC Server

    VLR

    HSSAuC

    GMSC server

    BSS

    SGSN GGSN

    PSTN

    CN

    CD

    GcGr

    Gn Gi

    Abis

    Gs

    B

    H

    IM IP Mult imedia sub-system

    MRF Media Resource Function

    CSCF Call State Control Function

    MGCF Media Gateway Control Function (Mc=H248,Mg=SIP)

    IM-MGW IP Multimedia-MGW

    Nc

    2G MS (voice only)

    2G+ MS (voice & data)

    Node B

    RNC

    RNS

    Iub

    3G UE (voice & data)

    Mc

    CS-MGW

    CS-MGWNb

    PSTNMc

    IuCS

    IuPS

    ATM

    IM

    IPPSTN

    Mc

    MGCF

    IM-MGW

    MRF

    CSCF

    Mg

    Gs

    IP Network

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    58/73

    59

    3GPP2 Defines IS-41 Evolution

    • 3rd Generation Partnership Project ―Two‖  – Evolution of IS-41 to ―all IP‖ more direct (skips ATMstage), but not any faster

     – Goal of ultimate merger (3GPP + 3GPP2) remains

    • 1xRTT – IP packets (like GPRS)• 1xEVDO – Evolution data-optimized

    • 1xEVDV – abandoned

    • 3x – Triples radio data rates• Universal Mobile Broadband (UMB) – 

    abandoned

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    59/73

    60

    NextGen Networks (NGN) Converging

    3GPP2 — CDMA2000 multi-media domain (MMD) based on 3GPP IMS R5

    TISPAN — evolves NGN architecture for fixed networks based on 3GPP IMS ITU-T NGN Focus Group — venue to make TISPAN NGN a global spec

    ATIS NGN Focus Group — formally collaborating with ETSI as of April 2005

    PacketCable Release 2.0 — aligning with portions of 3GPP

    2000 2001 2002 2003 2004 2005 2006

    3GPP Release 4

    3GPP IMS R53GPP IMS R6

    TISPAN R1

    3GPP2 MMD

    ITU-T NGN FG

    ATIS NGN FG

    Packet Cable 2.0

    3GPP IMS R7

    Following 3GPP lead

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    60/73

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    61/73

    62

    IMS / NGN Vision

    • One core network for ―any access‖  – Based on IP, using IETF standards, with extensions

     – Wireline and wireless transparency

    • Access and bandwidth will be commodities;services are the differentiator

     – Per-session control supports per-application qualityof service (QoS) and per-application billing

    • Voice is just application – ―Easily‖ integrated with other applications… 

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    62/73

    63

    IMS Story: Convergence

    Source: Team Analysis, Lucent

    Traditional Services

    TV Caller ID Phone Tools Push to Talk

    WirelinePacketCable

    Wireless WifiWiMax

       O   S   S   /

       B   S   S

    AccessDelivery

    MediaFunctions

    SubscriberData

    Application

       O   S   S   /

       B   S   S

    AccessDelivery

    MediaFunctions

    SubscriberData

    Application

       O   S   S   /

       B   S   S

    AccessDelivery

    MediaFunctions

    SubscriberData

    Application

    IMS Services

    Subscriber Data

    Media Functions

    IP Multimedia Subsystem

       O   S   S   /

       B   S   S

    ApplicationApplication

    Phone Tools Push to Talk

    WirelinePacketCable

    Wireless WifiWiMax

    Application

    TV Caller ID

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    63/73

    64

    IMS / NGN Value Proposition

    • Generate new revenue from new services – Per-session control allows IMS to guarantee QoS

    for each IP session, and enables differential billingfor applications & content

    • Reduce capital spending – Converge all services on common infrastructure

     – Focus limited resources on core competencies

    • To date, mobile operators have had noincentive to deploy IMS for voice services

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    64/73

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    65/73

    66

    Long Term Parallels: IN & IMS

    Intelligent Network• Free operators from equipment provider lock-in

    • Separate applications from basic call control

    • Open protocols and APIs for applicationsIntelligent Network Application Successes

    • FreePhone, Mobile (HLR), Pre-paid, Voice mail, … 

    • 15 year summary:A few applications, very widely deployed

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    66/73

    67

    LTE’s System Architecture Evolution (SAE) 

    Diagram by Huawei

    RAN (Radio access network)

    SGSN (Serving GPRS Support Node)PCRF (policy and charging function)

    HSS (Home Subscriber Server)

    MME (Mobility Management Entity)

    SAE (System Architecture Evolution)

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    67/73

    68

    Mobile Service Revenues

    • > $800 billion in 2007, growing 6%-7% per year – > $1 trillion by 2012

    • Voice services dominate: 81%

    • SMS services: 9.5% ; All other non-voice services: 9.5% 

    Source: Portio Research

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    68/73

    69

    Images courtesy of Jon Stern

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    69/73

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    70/73

    71

    The Internet is the killer platform

    • Mobile Internet accessdriving 3G data usage

    • Future business modelsan open question

    • Slides from yesterday’s

    Mobile Broadbanddiscussion, are available

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    71/73

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    72/73

    73

    Outrageous ideas

    • 5 GHz spectrum better than 700 MHz

    • 2020: LTE* >80%; WiMAX*

  • 8/13/2019 4g3 01 Turner Ashtonbrook

    73/73

    Thank you !

    Brough [email protected] 

    http://blogs.broughturner.com 

    mailto:[email protected]://blogs.broughturner.com/http://blogs.broughturner.com/mailto:[email protected]