43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

56
43 David Sutton

Transcript of 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

Page 1: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

43 David Sutton

Page 2: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

DAVID SUTTON PICTURES

DR. Muhammad Bin Zulfiqar PGR-FCPS III SIMS/SHL

Page 3: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.1 A comminuted fracture of the tibia, with medial displacement and overriding of the distal fragment. Because of the proximity of the skin surface to the anteromedial aspect of the tibia, penetration of the skin is likely, and in fact, air is seen in the soft tissues, indicating that penetration has occurred. There is medial displacement, but lateral angulation of the distal fragment. A segmental fibula fracture is noted.

Page 4: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.2 A comminuted fracture of the tibia, with a triangular 'butterfly‘ Fragment.

Page 5: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.3 Segmental fracture of the femur: by definition a comminuted fracture. In this case the isolated segment is clearly malaligned.

Page 6: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.4 (A,B) Torus fracture of the radius. The cortex is buckled on the dorsal surface. Apart from minor plastic deformity, the volar surface is intact.

Page 7: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.5 Elbow effusion: elevation of the anterior fat pad (arrow). Although not pathognomonic for fracture, anterior fat pad elevation indicates significant effusion, and is frequently associated with a fracture. Careful inspection of the unfused radial head shows a minor cortical stepoff of the metaphysis, indicating a fracture.

Page 8: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION
Page 9: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.7 (A,B) Compression fractures of the vertebral bodies of T7, T8 and T9 with large paraspinal haematoma, which took many months to absorb, still being visible after the fracture had consolidated. (Courtesy of Dr D. J. Stoker and Institute of Orthopaedics.)

Page 10: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.8 Comminuted fractures of both calcanei. The extent of the injury, and in particular of the articular involvement, is poorly displayed by the plain radiographs (A-C) particularly on the right. (D) CT images, however, demonstrate that there is an obvious disorganisation of fragments at the articular surface on the left, and a mildly depressed segment on the right.

Page 11: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.8 Comminuted fractures of both calcanei. The extent of the injury, and in particular of the articular involvement, is poorly displayed by the plain radiographs (A-C) particularly on the right. (D) CT images, however, demonstrate that there is an obvious disorganisation of fragments at the articular surface on the left, and a mildly depressed segment on the right.

Page 12: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.9 (A) Note orbital emphysema on the left, with air surrounding the eyeball (arrow), and beneath the eyelid (open arrows). This is highly suggestive of a blowout fracture. In this case there is irregularity of the inferior orbital rim (arrowheads), with an apparent soft-tissue density projecting into the maxillary sinus. (B) Tomography confirms the fracture of the orbital floor (arrow).

Page 13: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.10 Stress fractures of the sacrum. This elderly patient underwent nuclear medicine bone scan for pain in the lower back. A characteristic pattern of increased tracer uptake indicates a stress fracture in the osteoporotic sacrum.

Page 14: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.12 Coronal MRI (T 2 -weighted) of the pelvis and thighs of a young gymnast, who complained of pain and swelling in the groin. A well defined lesion of mixed signal intensity occupies the region of the iliopsoas. The mixed signal pattern is common in haematoma, indicating the complexity of the haematoma, and variations in haemoglobin, deoxyhaemoglobin, methaemoglobin and haemosiderin levels.

Page 15: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.11 Sagittal T,-weighted image (A) and T2-weighted image (B) demonstrate a well-defined osteochrondral fracture of the femoral condyle. A large joint effusion (bright on T2 -weighting) is seen.

Page 16: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.13 (A) A calcified 'mass' in the thigh of this 16 year old was worked to exclude tumour. (B) T,-weighted coronal MR images demonstrate a mass of low signal intensity, with surrounding low-signal-intensity oedema, with increased signal intensity on T 2 -weighted images (C). There is also a welldefined, low-signal-intensity 'ring' of calcification. Their appearances are characteristic of post-traumatic myositis ossificans.

Page 17: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.14 Non-union of the tibia despite interosseous bone grafting and surgical wiring. There is sclerosis around the fracture line, without firm evidence of bone bridging, 1 year after the fracture.

Page 18: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.15 (A) MRI scan demonstrates tissue of mixed signal intensity in the fracture gap of non-union of the distal femur (arrows) on T1 –weighted images. (B) Areas of increased signal intensity are shown on T 2 –weighted images (dark arrows), indicating foci of infection.

Page 19: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.16 Malunion of the tibial fracture, which has healed well, but shows lateral angulation of the distal fragment.

Page 20: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.17 Stress fracture. (A) An area of increased sclerosis, with some dense periosteal new bone in the mid tibia. (B) MRI may be helpful in early diagnosis before the plain radiographic signs become apparent.

Page 21: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.18 Multiple stress fractures are seen, some with obvious horizontal lucencies running perpendicular to the bone cortex. The patient was a jogger who refused to give up jogging despite the pain!

Page 22: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.19 (A) Diagrammatic representation of an oblique view of a lumbar vertebra, presenting the 'scotty dog' appearance. The pars interarticularis defect corresponds to the dog's collar. (B, C) Pars defect: oblique radiograph demonstrates the same appearances as in (A). (Courtesy of Dr D. J. Stoker and Institute of Orthopaedics.)

Page 23: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.19 (A) Diagrammatic representation of an oblique view of a lumbar vertebra, presenting the 'scotty dog' appearance. The pars interarticularis defect corresponds to the dog's collar. (B, C) Pars defect: oblique radiograph demonstrates the same appearances as in (A). (Courtesy of Dr D. J. Stoker and Institute of Orthopaedics.)

Page 24: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.20 Osgood-Schlatter disease. Fragmentation may be seen and a portion of the tibial tubercle ossification centre is elevated.

Page 25: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.21 (A) Note an avulsion of the inferior border of the ischium at the site of insertion of the hamstrings. MRI of this injury (B) indicates the extent of injury to the underlying bone (arrowheads), not seen on the plain radiographs.

Page 26: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.22 Avulsion fracture of the anterior inferior iliac crest: This is the origin of the rectus femoris muscle.

Page 27: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION
Page 28: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.24 (A) CT shows a cortical fracture of the femoral head from previous posterior hip dislocation. A small intra-articular fragment is seen. (B) MRI scan performed several weeks later, indicates the typical findings of avascular necrosis.

Page 29: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.25 Post-traumatic avascular necrosis of the proximal pole of the scaphoid. Although the fracture of the waist of the scaphoid has 'healed', avascular necrosis has occurred, with resulting sclerosis.

Page 30: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.26 Kienbock's disease: in fact, a form of traumatic avascular necrosis of the lunate.

Page 31: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.27 Vibration syndrome. Fragmentation and flattening of the lunate due to avascular necrosis is typical of Kienbock's disease, accompanied by extensive cystic changes in the surrounding bones. These abnormalities occurred in a worker using compressed-air drills, who had been exposed to this repeated trauma for many years. (Courtesy of Dr D. J. Stoker and Institute of Orthopaedics.)

Page 32: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.28 Sudeck's atrophy: there was minor trauma to the forearm some weeks earlier. Note gross osteoporosis of the bones of the hand, wrist and forearm, most marked at the bone ends, but also causing cortical 'thinning' and resorption.

Page 33: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.29 Post-traumatic myositis ossificans. A well-defined bone density arises from the cortex of the distal femur and extends into the soft tissues. There was a history of blunt trauma, but even so, this lesion needs to be differentiated from parosteal osteosarcoma.

Page 34: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.30 Myositis ossificans associated with paraplegia. Very extensive soft-tissue ossification is visible around both hip joints. (Courtesy of Dr D. J. Stoker and Institute of Orthopaedics.)

Page 35: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.31 Pellegrini-Stieda lesion. Post-traumatic calcification is shown in relation to the medial femoral condyle following a tear of the medial collateral ligament. (Courtesy of Dr D. J. Stoker and Institute of Orthopaedics.)

Page 36: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.32 Traumatic avulsion of the right superior gluteal artery (arrow) from pelvic trauma. Bleeding from branches of the internal iliac artery is also seen (open arrows). Marked diastasis of the right sacroiliac joint has occurred.

Page 37: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION
Page 38: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION
Page 39: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.35 Avulsion fractures of the proximal phalanx of the thumb. (A) Fracture at the site of attachment of the radial collateral ligament. (B) Fracture at the site of the attachment of the ulnar collateral ligament. In practice, the adductor of the thumb inserts in the same area, and may also be avulsed.

Page 40: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.36 Rotator cuff tear. (A) Arthrography is performed by injecting contrast medium, with or without air, into the shoulder joint. Leakage of contrast into the subdeltoid bursa (arrows) indicates a rupture of the rotator cuff which normally separates the bursa from the joint. (B) MRI demonstrates a large joint effusion, shown as high signal on this FLASH image. The effusion, which shows markedly increased signal intensity on this sequence, has tracked into the subdeltoid bursa (arrowheads), indicating rotator cuff rupture. In this case the subscapularis is seen to be retracted, with an irregular lateral margin(large arrows).

Page 41: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.37 Tear of the posterior horn tear of medial meniscus. MRI image (T 2 -weighted) demonstrates a linear area of higher signal extending to the articular surface.

Page 42: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.38 Baker's cyst. T2 -weighted sagittal image of the knee demonstrates a well-defined high-signal-intensity lesion posterior to the knee joint.

Page 43: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.39 Salter-Harris classification. I, Injury through the epiphyseal plate only. II, Fracture through the epiphyseal plate and metaphysis. III, Fracture through the epiphyseal plate and epiphysis. IV, Fracture through the epiphyseal plate, metaphysis and epiphysis. V, Crush fracture of the epiphyseal plate.

Page 44: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.40 Fracture-separation of the distal femoral epiphysis in an anteromedial direction, carrying with it a large fragment of the femoral metaphysis-the relatively common Salter Harris Type II injury.

Page 45: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.41 Premature fusion of the distal radial epiphysis, following a fracture-separation 7 years before, with relative overgrowth of the ulna.

Page 46: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.42 Bilateral slipped capital femoral epiphyses. The diagnosis is more difficult when there is such symmetrical abnormality. There is, however, obvious blurring of the epiphyseal line, and elongation of the femoral neck. The femoral head does not project above the line of the femoral neck on either side.

Page 47: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.43 Battered child. Healing fractures are seen in both proximal humeri.

Page 48: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.44 Non-accidental injury. The radiograph shows multiple rib fractures at different stages of healing, probably the result of repeated compression injuries to the thorax. The child was admitted with a recent skull fracture. (Courtesy of Dr D. J. Stoker and Institute of Orthopaedics.)

Page 49: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.45 Frostbite. Note acro-osteolysis of the toes, with almost complete resorption of the distal phalanges.

Page 50: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.46 Avascular necrosis of the hips. Note mixed sclerosis and lucency of the femoral heads, with collapse of the weight-bearing surface but maintenance of the joint spaces, indicating intact articular cartilage.

Page 51: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.47 Early Charcot joint, diabetic patient. Note irregularity of the talar dome, with increased density seen around the ankle joint.

Page 52: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.48 Charcot joint: syringomyelia. The elbow joint shows marked irregularity, with abundant sclerosis, deformity and bone debris. On initial examination, the appearance resembles synovial osteochondromatosis.

• However, the generalised sclerosis and joint destruction indicate the diagnosis.

Page 53: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.49 Charcot joint: syringomyelia. Same patient as in Fig. 43.48. There is the appearance of a surgical 'amputation' of the head of the humerus. Glenoid destruction, joint debris, and increased radiodensity of the bones indicate the true nature of the abnormality.

Page 54: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.50 Osteochondritis dissecans. (A) Note defect in the femoral condyle, comprising a lucent ring with a more sclerotic centre. (B) MRI scan of avascular necrosis of the femoral condyle following subchondral fracture.

Page 55: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION

• Fig. 43.51 Osteochondral fracture. Sagittal T 1 - weighted MRI of the ankle. There is a well-defined area of abnormal signal in the inferior border of the talus at the insertion of the interosseous ligament (arrows). The ligament itself cannot be seen, indicating disruption.

Page 56: 43 DAVID SUTTON PICTURES SKELETAL TRAUMA : GENERAL CONSIDERATION