40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs....

45
Electronic Supplementary Material Table S1: The ergogenic effects of hyperoxia (HE): Acute effects on performance. * P< 0.05; ** P < 0.01; *** P < 0.001 in comparison to normoxia (NO, F i O 2 = 0.2095); n.s.= not significant. n = number; F i O 2 = oxygen content; P = power; F = force; WR = work rate; MVC = maximal voluntary contraction Investigators n F In O 2 Test design P P max F max WR WR max Final time (performance) [%] [Watt] [Watt] [N] [N*m] [N*m] [s] (NO versus HE and/or % change) ZINNER et al. (2015) [96] 10 1.0 Double poling, 3x3 min LAYEC et al. (2015) [71] 7 + 1 1.0 Double-leg alternate knee flexion, 6 min at 25% MVC ↑* 60 vs. 70 YOKOI et al. (2014) [53] 12 0.3 Isometric quadriceps contractions at 70% MVC (3 × 3 × no less than 30 s) ↑* OUSSAIDENE et al. (2013) [29] 8 0.3 Cycling, ramp test ↑* 302 vs. 319

Transcript of 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs....

Page 1: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

Electronic Supplementary Material Table S1: The ergogenic effects of hyperoxia (HE): Acute effects on performance.

* P< 0.05; ** P < 0.01; *** P < 0.001 in comparison to normoxia (NO, FiO2 = 0.2095); n.s.= not significant.

n = number; FiO2 = oxygen content; P = power; F = force; WR = work rate; MVC = maximal voluntary contraction

Investigators n

FInO2

Test design

P Pmax Fmax WR WRmax Final time

(performance)

[%] [Watt] [Watt] [N] [N*m] [N*m] [s]

(NO versus HE and/or % change)

ZINNER et al. (2015) [96]

10 ♂ 1.0 Double poling, 3x3 min →

LAYEC et al. (2015) [71]

7 ♂ + 1 ♀

1.0Double-leg alternate knee flexion, 6 min at 25% MVC

↑* 60 vs. 70

YOKOI et al. (2014) [53]

12 ♂ 0.3Isometric quadriceps contractions at 70% MVC (3 × 3 × no less than 30 s)

↑*

OUSSAIDENE et al. (2013) [29]

8 ♂ 0.3 Cycling, ramp test ↑* 302 vs. 319

SPERLICH et al. (2012) [39]

10 ♂ 1.0 Cycling, 5 x 30-s sprints → →

SPERLICH et al. (2011) [44]

12 ♂ 1.0Swim bench, 5 x 50-s maximal arm strokes

→ →

PEELING & ANDERSSON (2011) [42]

5 ♂ + 2 ♀

1.0Kayak ergometer, 6x3 min

Page 2: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

SPERLICH et al. (2010) [37]

10 ♂ 0.6Cycling, 15 s isokinetic sprint

→ →

SEGIZBAEVA & ALEKSANDROVA (2009) [97]

8 ♂ 1.0Cycling, incremental test 30W/3min

↑*

181 vs. 210

VOGIATZIS et al. (2008)a [33]

7 ♂ 1.0Cycling, 5 min at 90% WRmax

↑*

290 vs. 325

VOGIATZIS et al. (2008)b [98]

7 ♂ 1.0Cycling, 5 min at 90% WRmax

↑*

290 vs. 325

SUBUDHI et al. (2008) [63]

11 ♂ 0.60

Cycling, incremental test

(100, 130, 160 W/ 2 min; 15 W/1min)

LOVERING et al. (2008) [99]

4 ♂ + 3 ♀

1.0Cycling, incremental test (60 W + 30 W/2 min)

↑*

304 vs.334

TUCKER et al. (2007) [32]

11 ♂ 0.40 Cycling, 20-km time-trial↑*

277 vs. 292

↑**

-34

AMANN et al. (2006) [22]

8 ♂ 1.0 Cycling, 5-km time trial↑**

18%

↑n.s.

351 vs. 416

↑*

-19.5

GRATALOUP et al. (2005) [23]

16 ♂ 0.30Cycling, incremental test: 0.333 W/min

↑**

403 vs. 413

WILBER et al. (2003) [100]

19 ♂0.26;

0.60

Cycling, maximal test - 6x100 kj

↑*

265 vs. 290

for FiO2 = 0.6

↑*

-32

Page 3: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

EVES et al. (2002) [101]

25 ♂ 0.40Running, incremental test (2% /2 min)

↑*

321 vs 354

PRIEUR et al. (2002) [18]

10 ♂ 0.30

Cycling, incremental test at 40%, 55%, 70%, 85%

V̇ O2max

↑*

118 vs. 131

↑ **

259 vs. 271

PELTONEN et al. (2001)a [21]

11 0.32Cycling, 7-min maximal test

↑*

361 vs 372

PELTONEN et al. (2001)b [66]

6 ♂ 0.32Cycling, incremental test (0 W + 100 W/5min)

↑*

383 vs 404

5.5%

LINOSSIER et al. (2000) [28]

5 0.60Cycling, incremental test, tlim at Wmax, 5 min at 90% Wmax + 10-s sprint

Incremental: → 287 vs. 299

Sprint: ↑ 421 vs. 477

↑*

15%

RICHARDSON et al. (1999) [65]

7 ♂ 1.0Knee-extensions, incremental test (20/5/1min)

↑*

14 %

NIELSEN et al. (1999) [19]

11 ♂ 0.30Rowing, 6-min maximal test

↑*

389 vs. 413

RICHARDSON et al. (1999) [11]

5 ♂ 1.0Single-legged knee extension until WRmax

↑*

12 %

NIELSEN et al. (1998) [102]

11 ♂ 0.30Rowing, 6-min maximal test

PELTONEN et al. (1997) [30]

6 ♂ 0.62Rowing, 2,500-m time- trial

↑*

76.7 vs. 80.5

↑*

-11

Page 4: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

KNIGHT et al. (1996) [26] 11 ♂ 1.0

Cycling, incremental test: 20%, 35%, 50%, 92%, 100% of Pmax

↑*

369 vs 401

PELTONEN et al. (1995) [12]

6 ♂ 0.62Rowing, 2500-m time- trial

↑*

352 vs.375

↑*

-11.5

WALSH & BANISTER (1995) [34]

7 ♂ 0.40 Cycling, incremental test ↑**

HUGHSON & KOWALCHUK (1995) [25]

6 ♂ 0.70Cycling, incremental test: 15W·min-1

↑*

340 vs. 354

KNIGHT et al. (1993) [27]

11 ♂ 1.0Cycling, incremental test: 20%, 35%, 50%, 92%, 100% of Pmax

↑*

369 vs 401

PLET et al. (1992) [16]

5 ♂ + 6 ♀

0.55Cycling, incremental test: 30 W/min

↑*

289 vs 322

EIKEN & TESCH (1984) [103]

8 0.99One-legged quadriceps contractions, 60 maximal dynamic

↑*

98 vs. 104

HOGAN et al. (1983) [17]

6 ♂ 0.60Cycling, incremental test: 60 W, 90 W, 105 W +15 W/3min)

↑**

220 vs 233

Page 5: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

Electronic Supplementary Material Table S2: Hyperoxia (HE) during recovery from intermittent exercise.

Symbols: → = no effect; ↑ = elevation; ↓ = reduction. * = P < 0.05 HE vs. normoxic (NO, FiO2 = 0.2095)

n = number; HR = heart rate; V̇ E = minute ventilation; V̇ O2 = oxygen uptake; V̇ O2max = maximal oxygen uptake; La = blood lactate concentration; SaO2 = oxygen saturation of arterial haemoglobin; RPE = ratings of perceived exertion; Pmean = mean power output; Ppeak = peak power output; paO2 = partial pressure of arterial oxygen; iEMG = integrated electromyography; pH = blood pH; [H+] = hydrogen ion concentration; BE = base excess; FIO2 = fraction of oxygen; MVC = maximal voluntary contraction

Investigators nFIO2

Recovery exerciseResults (HE vs. NO)

[%] Performance Responses

ZINNER et al. (2015) [96]

10 ♂ 1.0 3 min Double poling, 3x3 min Mean power →SaO2. PO2 ↑

PCO2, pH, [La], RPE →

YOKOI et al. (2014) [53]

12 ♂ 0.3 15 min Isometric quadriceps contractions at 70% MVC (3 × 3 × no less than 30 s)

% Maximal voluntary isometric contraction ↑

Endurance time to exhaustion →

[La-], perceived exertion →

WHITE et al. (2013) [43]

10 ♂ 1.0 90 s Running, 10x3 min at 85% VO2maxSaO2 recovery ↑*

IL-6 and Isoprostanes →

SPERLICH et al. (2012) [39]

10 ♂ 1.0 6 min Cycling, 5 x 30 s maximal Pmean and Ppeak →

SaO2 and paO2 ↑*

RPE ↓*

[La-], pH, [H+] and BE →

SPERLICH et al. (2011) [44]

12 ♂ 1.0 6 min Swim bench, 5 x 50 s maximal arm strokes Pmean and Ppeak↑

SaO2 and paO2 ↑*

iEMG and RPE ↓*

[La-], pH, [H+] and BE →

PEELING & ANDERSSON (2011) [42]

7 1.0 2 min Kayaking, 6 x 3 min high-intensive intervals Pmean →SaO2 recovery time ↑*

HR, [La-] and RPE →

Page 6: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

KAY et al. (2008) [38] 12 ♂0.60

1.004 min Cycling, 2 x 30-s Wingate test

Ppeak→ (FiO2: 0.60)

Ppeak↑* (FiO2: 1.00)

Total work → (FiO2: 0.60 or 1.00)

NUMMELA et al. (2002) [20]

9 ♂ 0.4

Between sprints:

1, 2 & 4 min

Between sets:

5 & 10 min

Running, 3 x 3 x 300-m sprints at 66%. 76% and 83% of each sprinter’s seasonal best 400-m running times

SaO2 ↑*

HR and RPE →

[La-] and pH →

MAEDA & YASUKOUCHI (1997) [41]

14 ♂0.3. 0.4. 0.6. 0.8.

1.06 min Cycling, 3 x 5 min submaximal at 70% V̇ O2max [La-] ↓*

ROBBINS et al. (1992) [46]

13 ♂ 1.0 4 minRunning, 2 x 5 min submaximal exercise followed by a single bout to exhaustion

Performance time →V̇ O2max and V̇ E →

HR and RPE →

WINTER et al. (1989)

[47]12 ♂ 1.0 5 min Running, 2 x incremental bouts until exhaustion Performance time →

V̇ O2max →

[La-] →

GARNER et al. (1986) [45]

8 ♂ 0.55 9 minCycling, 6 min submaximal (80% of the ventilatory threshold)

V̇ O2 →

V̇ E and HR →

Page 7: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

Electronic Supplementary Material Table S3: Long-term adaptation in response to hyperoxia (HE) during exercise.

Symbols: → = no effect; ↑ = elevation; ↓ = reduction. * = P < 0.05 HE vs. normoxic (NO , FiO2 = 0.2095)

n = number; HR = heart rate; V̇ E= minute ventilation; V̇ O2 = oxygen uptake; V̇ O2max = maximal oxygen uptake; SaO2 = oxygen saturation of arterial hemoglobin; tlim = time to exhaustion; FIO2 =

fraction of oxygen; ß HAD = ß-hydroxyacyl-coenzyme A dehydrogenase; m-ASAT = mitochondrial aspartate aminotransferase; SV = stroke volume ; Q = cardiac output; CK = creatine kinase;

PFK = phosphofructokinase

Investigators n

FInO2

Training Testing

Performance

(HE vs. HO)

Physiological Responses

(HE vs. HO)[%]

MURRAY et al. (2015)

[104]15 ♀

1.00 during

rest periods

Running, 2 sessions/ week for 6 weeks (7-12 x 120 s at 85% maximal aerobic speed)

30-15 intermittent fitness test Maximal aerobic speed → HRpeak ↑ during training

Lapeak → during training

KILDING et al. (2012) [54]

14 ♂ 0.60

Cycling, 2 sessions/week for 4 weeks interval training (12x2 min, 5x5 min)

two-group design

Cycling, in normoxia, incremental test (150 W +30 W/3min), 20-km time-trial, 60-s sprint

Peak power incremental test →

Lactate threshold →

Time-trial mean power →

Sprint peak and mean power →

SaO2 ↑ during training

VO2max →

PERRY et al. (2007) [56]

6 ♂ + 3 ♀

0.60

Cycling, 3 sessions/week for 6 weeks interval training (10x4 min at 90% V̇ O2max)

crossover design

Cycling, in normoxia, incremental test, tlim at 90% VO2max, muscle biopsy tlim → VO2max →

Citrate synthase, β-HAD, m-AsAT →

Page 8: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

PERRY et al. (2005) [55]

8 ♂ + 1 ♀

0.60

Cycling, 3 sessions/week for 6 weeks interval training (10x4 min at 80% V̇ O2max)

crossover design

Cycling, in normoxia, incremental test, tlim at 90% VO2max, 8 min at 80% VO2max

tlim ↑*VO2max →

VE →

submaximal HR →

MOURTZAKIS et al. (2004) [105]

6 ♂ 0.60One-leg knee extension, 5 sessions/week for 5 weeks at 70% Pmax

One-leg knee extension, incremental test

Comparisons between trained and untrained leg:

Peak work rate ↑*

Comparisons between trained and untrained leg:

Muscle mass ↑*

Type I and II fibers →

Capillary density →

VO2max ↑*

Blood flow ↑*

(a-v) O2 →

MORRIS et al. (2000) [57]

15 ♂ 0.26

Cycling, 3 sessions/week for 3 weeks 105-115% maximal lactate steady state + 9 sessions outside the laboratory (1840 m altitude)

Cycling, incremental test, time-trial, submaximal test

Power at lactate deflection point ↑

Power at maximal lactate steady-state ↑

Power at VO2max →

PLOUTZ-SNYDER et al. (1996) [31]

15 ♂ 0.70

Cycling, 5 sessions/week for 5 weeks 40 min at 70% HRmax (normoxia or hyperoxia, respectively)

Cycling, incremental test: 35W + 35W/2 min,

muscle biopsy

VE →

VO2 →

HR →

SV and Q →

Muscle fibers →

CK, PFK →

Page 9: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

Electronic Supplementary Material Table S4: Cardiopulmonary responses to hyperoxia (HE) and consequences for oxygen transport and delivery

* P< 0.05; ** P < 0.01; *** P < 0.001 vs normoxia (NO, FiO2 = 0.2095); n.s. = not significant.

n = number; FiO2 = oxygen content; V̇ O2max = maximal oxygen uptake; V̇ O2 = oxygen uptake; V̇ CO2 = expired carbon dioxide; RER = respiratory exchange ratio; HR = heart rate; Q = cardiac output; V̇ E = minute ventilation; BF = breath frequency; SaO2 = arterial oxygen saturation; PaO2 = arterial partial pressure of oxygen; PaCO2 = arterial partial pressure of carbon dioxide; PETO2 = end-expiratory pO2; PETCO2 = end-expiratory pCO2; Hb = hemoglobin; Hct = hematocrit; MBP = blood pressure; MVC = maximal voluntary contraction.

Investigators nFIO2

Study DesignV̇ O2max V̇ O2 V̇ CO2 RER HR HRmax Q̇ V̇ E BF SaO2 PaO2 PaCO2 PETO2 PETCO2 Hb Hct Blood

flowMBP

[%] [ml·min-1] [ml·min-1] [ml·min-1] [S·min-1] [S·min-1] [l·min-1] [l·min-1] [1·min-1] [%] [mmHg] [mmHg] [mmHg] [mmHg] [mmol·i-1] [%] [ml·min-1] [mmHg]

ZINNER et al. (2015) [96]

10 ♂ 1.0Double poling, 3x3 min

↑* ↑* →

LAYEC et al. (2015) [71]

7 ♂ + 1 ♀ 1.0

Double-leg alternate knee flexion, 6 min at 25% MVC

EDGELL & STICKLAND (2014) [106]

14 ♂ 1.03-min handgrip exercise at 40% MVC

→ ↑* → → → → →

WHITE et al. (2013) [43]

10 ♂ 1.0Running, 10x3 min at 85% VO2max

→ →

OUSSAIDENE et al. (2013) [29]

8 ♂ 0.3 Cycling, ramp test ↑* → ↓*↑* 96 vs. 97

↑*

PRIEUR et al. (2012) [107]

8 ♂ 0.3Cycling, constant load test

as assessed by NIRS

Page 10: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

SPERLICH et al. (2012) [39]

10 ♂ 1.0Cycling, 5 x 30-s sprints

↑* ↑*

SPERLICH et al. (2011) [44]

12 ♂ 1.0

Swim bench, 5 x 50-s maximal arm strokes

↑* ↑*

PEELING & ANDERSSON (2011) [42]

5 ♂ + 2 ♀ 1.0Kayak ergometer, 6x3 min

→ →

CASEY et al (2011) [108]

6 ♂ + 1 ♀ 1.0Forearm exercise at 20% MVC

↑* 68 vs. 66

→ ↓* ↑*

SEGIZBAEVA & ALEKSANDROVA (2009) [97]

8 ♂ 1.0Cycling, incremental test 30W/3min

↑* 38 vs. 41

→ → → →

ANDO et al. (2009) [109]

12 ♂ 0.28

Cycling, incremental test in three steps:

5 min at 100 -150 – 200 W

↑ n.s ↓ n.s. ↑ n.s. ↑*** ↓ n.s

VOLIANITIS et al. (2008) [110]

6 ♂ 0.30Rowing, 2000-m all-out

↑*

4700 vs. 5200

↓ n.s

181 vs. 178

↑ n.s

168 vs. 172

↑*

92.5 vs. 98.9

↑n.s. ↑n.s.

↑ n.s

104 vs. 109

STICKLAND

et al. (2008) [111]

7 ♂ 1.0Handgrip exercise at 50% MVC

↓*

77 vs. 74

↑ n.s →

↑*

114 vs. 635

→ →

AMANN et al. (2008) [112]

8 ♂ 1.0 Cycling, constant load until exhaustion

↑*

93 vs. 100

Page 11: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

Cycling, 5-km time-trial

↑*

91 vs. 100

VOGIATZIS

et al. (2008)a [33]

7 ♂ 1.0Cycling, 5 min at 90% WRmax

↑ n.s

4290 vs. 4700

↑ n.s

4650 vs. 5080

↓ n.s

174 vs.171

↓ n.s

28.4 vs.

27.8

↑ n.s

122.5 vs.

126.5

↑**

89 vs. 640

SUBUDHI

et al. (2008) [63]

11 ♂ 0.60

Cycling, incremental test

(100, 130, 160 W/ 2 min; 15 W/1min)

↓*

163 vs. 133

↑*

96 vs. 97

VOGIATZIS

et al. (2008)b [98]

7 ♂ 1.0Cycling, 5 min at 90% WRmax

→ →

↑*

95.0 vs.99.8

TUCKER et al. (2007) [32]

11 ♂ 0.40Cycling, 20-km time-trial

8 ♂ 0.40Cycling, constant load until exhaustion

MARWOOD & BOWTELL (2007) [113]

8 ♂ 0.50Cycling, 6 min at 70% V̇ O2max

→ →

WILKERSON

et al. (2006) [36]

7 ♂ 0.50

Cycling

→ → →↑*

96 vs.99

↑*

97 vs. 267moderate

heavy ↑ n.s → →

Page 12: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

supra-maximal ↑ n.s → →

AMANN et al. (2006) [22]

8 ♂ 1.0Cycling, 5-km time-trial

↑*

171 vs. 207

↑*

91.2 vs.100

↑*

116 vs. 630

↑*

29 vs. 32

STELLINGWERFF et al. (2006) [70]

7 ♂ 0.60Cycling, 40 min at 70% V̇ O2max

→ → →

↑*

98 vs. 306

↑*

34 vs.38→ →

HOUSSIERE et al. (2006) [114]

12 ♂ 1.0

rest↓*

63 vs.58

↑*

97 vs. 99

↓*

88 vs.84

Handgrip exercise, 3 min at 30% MVC

↓ n.s.

80 vs. 75

↑*

97 vs. 99

↑ n.s

112 vs. 118

PE-CA 3 min

↓n.s.

61 vs. 58

↑*

97 vs. 99

↑ n.s

103 vs. 105

FAVIER

et al. (2005) [78]

9 ♂ 0.30

Cycling, 6 min at 50% V̇ O2max

↑**

2030 vs.2190

↓*

0.893 vs 0.844

→ →

Cycling, 5 min at 95% V̇ O2max

↑**

2180 vs. 2350

↓ n.s. ↓ n.s. ↓ n.s.→

GRATALOUP et al. (2005) [23]

16 ♂ 0.30 Cycling, incremental test: 0.333 W/min

↑** → → → ↑** →

Page 13: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

4370 vs. 4550

95 vs. 98

STELLINGWERFF et al. (2005) [69]

10 ♂ 0.60Cycling, 15 min at 70% V̇ O2max

↓*

79.3 vs. 75.9

HASELER et al. (2004) [115]

5 ♂ 1.0Gastrocnemius exercise, 5 min at 60% WRmax

↑n.s.

98.2 vs. 100

↑*

120 vs. 650

WILBER

et al. (2003) [100]

19 ♂0.26;

0.60

Cycling, max test - 6x100 kj

↑*

↑*

7%

14%

↓*

6% for FiO2 =

0.6

↑*

5% and 8%

PRIEUR et al. (2002) [18]

10 ♂ 0.30Cycling, incremental test (30 W/2min)

↑ **

437

15%

↑ **

3090 vs 3520

↑ n.s. 3670 vs 3850

↓*

1.19 vs. 1.10

→ →

↑ **

95.7 vs 98.8

Cycling, 12 min at 40% V̇ O2max

↑*

1450 vs 1520

↓*

0.92 vs 0.88

→↑n.s. ↓**

43 vs 40

↑**

46 vs. 48

Cycling, 12 min at 55% V̇ O2max

↑*

1870 vs. 1960

↓***

0.99 vs 0.93

→↑n.s. ↓***

55 vs 51

↑***

47 vs. 48

Cycling, 12 min at 70% V̇ O2max

↑***

2250 vs. 2390

→ ↓**

1.02 vs 0.97

→ → ↓**

68 vs 63

↑***

47 vs.

Page 14: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

50

Cycling, 12 min at 85% V̇ O2max

↑*

2670 vs 2770

↓**

1.06 vs 1.01

↓**

84 vs 76**

↑**

46 vs. 48

NUMMELA et al. (2002) [20]

9 0.40Running, 3x3x300m

↑***

91.7 vs. 97.6

↑*

70 vs. 120

↑*

37 vs. 38.5

EVES et al. (2002) [101]

25 ♂ 0.40Running, incremental test (2% / 2min)

↑*

4540 vs. 5000

↑*

5340

5830

→ → →

↑*

91.5 vs. 97.7

PELTONEN et al. (2001)a [21]

11 0.32Cycling, 7 min maximal test

↑*

4360 vs 4800

(9.2%)

↑n.s.

90.7 vs 94.3

PELTONEN et al. (2001)b [66]

6 ♂ 0.32Cycling, incremental test

↑*

4550 vs 5170

(13.6%)

↑*↑n.s.

5.7%→

↑*n.s.

95 vs 97

PEDERSEN

et al. (1999) [64]

5 ♂ + 3 ♀ 0.60

Single-legged knee extension, 20 min at 70% and 100% Wmax

↑*

920 vs. 1000

↓*

0.90 vs 0.82

(4-6 min)

↓*

108 vs. 102

↑*

98 vs 100

↓*

7.3 vs. 6.4

Page 15: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

RICHARDSON et al. (1999) [11]

5 ♂ 1.0Single-legged knee extension until WRmax

↑*

1080 vs.1280

↓n.s.

↑*

98.4 vs. 99.9

↑*

125 vs. 618

[Torr]

RICHARDSON et al. (1999) [65]

7 ♂ 1.0Knee-extensions, incremental test (20W+5W/1 min)

↑*

1240 vs. 1450

↑*

98.3 vs. 99.9

↑*

122 vs. 621

[Torr]

↑n.s.

8.3 vs. 8.5

PELTONEN et al. (1999) [116]

5 ♂ + 1 ♀ 0.29

Running, 4x4 min at 50, 60, 70, 80%

V̇ O2max

→ → → →

↑*

91 vs. 94

HOGAN

et al. (1999) [24]

3 ♂ + 3 ♀ 1.0plantar flexion, incremental test (1 W/ 2 min)

NIELSEN et al. (1999) [19]

11 ♂ 0.30Rowing, 6-min maximal test

↑*

5200 vs 5800

↑*

5900 vs. 6200

→ → → →

↑*

97.6 vs. 91.9

↑*

78 vs. 165

↑*

33 vs.39

↑*

113 vs. 168

→ ↑ n.s. → →

NIELSEN et al. (1998) [102]

8 ♂ 0.30Rowing, 6 min maximal test

↑* 11.3%

↑*

4500 vs. 5100

↑*

4600 vs. 5000

→ ↓n.s. ↓n.s.

↑*

92 .9 vs.98.3

↑*

81 vs. 165

↑*

117 vs. 183

↑*

36 vs. 41

HASELER et al. (1998) [51]

6 ♂ 1.0plantar flexion, 10 min at 60% Wmax

↓*

72 vs. 64

↑*

99 vs. 100

MacDONALD et al. (1997) [77]

5 ♂ + 2 ♀ 0.30Cycling, 3x6 min at 25 W + 2x10 min at V̇ O2max

↑* ↓n.s.

Page 16: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

STRÜDER

et al. (1996) [117]

8 ♂ 1.0Cycling, 60 min submaximal

↓**

PLOUTZ-SNYDER

et al. (1996) [31]

10 ♂ 0.70Cycling, incremental test: 35W/35W/ 2 min

↑*

11-12%

↓*

1.2 vs. 0.95

→ ↑ n.s.

↓*

155.5 vs.

166.3

HUGHSON & KOWALCHUK (1995) [25]

6 ♂ 0.70Cycling, incremental test: 15 W·min-1

↑ n.s. 3755 vs

3905

PELTONEN et al. (1995) [12]

6 ♂ 0.62Rowing, 2500-m time-trial

↑**

↑*

178 vs 189

↓*

181.8 vs 174.8

MIYAMOTO & NIIZEKI (1995) [118]

5 ♂ 0.50Cycling, incremental test: 15 W/min-1

→ ↓n.s. → ↑ n.s

↑*

42.5 vs. 49

WALSH & BANISTER (1995) [34]

7 ♂ 0.40Cycling, incremental test

↑**

4400 vs. 4080

→ →

MATEIKA & DUFFIN (1994) [35]

7 ♂ 0.66Running, incremental test

→ →

↓*

86 vs. 77

KNIGHT et al. (1993) [27]

11 ♂ 1.0

Cycling, incremental test: 20%, 35%, 50%, 92%, 100% of Pmax

↑*

4180 vs. 3770

↑ → → →

↑*

94.5 vs. 98.2

↑*

96 vs. 624

[Torr]

Page 17: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

PLET

et al. (1992) [16]

5 ♂ + 6 ♀

0.55Cycling, incremental test: 30 W/min-1

↑*

12%♀

↑ n.s 4% ♂

↓* ♀

187 vs

192

↓n.s. ♂

↓n.s.

♀ + ♂

↑*

76 vs.164

↑*

26 vs. 31

0.55

Cycling 80% of

V̇ O2max to exhaustion

→ → →

↓* *

179 vs.

172

↓*

105 vs. 88

SEALS et al. (1991) [119]

7 ♂ 1.0Handgrip exercise, maximal (3-4 min at 50% max)

↓*

79 vs. 72

→ →

↑*

94 vs. 640

→ →

GRAHAM et al. (1987) [15]

6 ♂

0.60

Cycling, 40 min 70-75%

V̇ O2max

↑ n.s.

2%↑ n.s. →

↓*

167 vs.153

0.60Cycling, 30 min 75-80% V̇ O2max

→ ↑ n.s. →

↓*

148 vs. 133

NAKAZOMO & MIYAMOTO (1987) [120]

4 ♂ 0.42Cycling, 5 min at 70 W with 60 rpm

→ →

↓*

123.3 vs.

113.6

↓*

3.2 %

↓n.s.

10.1 %

↓*

20.3 vs. 17.9

↑ n.s.

104 vs.276

↑ n.s.

43.3 vs. 44.6

GARNER et al. (1986) [45]

8 ♂

0.55;

0.79;

0.86;

80% V̇ O2max

cycle ergometer→ → → →

ADAMS et al. (1986) [121]

6 ♂ 0.61 Cycling, 30 min at 77% V̇ O2max

→ ↓ n.s ↓* ↓ n.s. ↓*

Page 18: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

0.93 vs 0.82*

108 vs 87

BYRNES

et al. (1984) [122]

6 ♂ 0.70Cycling, incremental test: 33 W/3 min

→ → → → ↓n.s. ↓*

0.70Cycling, 20 min at 75% V̇ O2max

↑**

13%↑** ↑** → →

GRAHAM & WILSON (1983) [15]

1 ♂ + 4 ♀ 0.60Cycling, 30 min at 65% V̇ O2max

↑ n.s. →

↓*

0.94 vs.

0.91

↓*

156 vs.151

↓*

67.5 vs. 62.8

HOWLEY et al. (1983) [73]

4 ♂ + 2 ♀ 0.60

Cycling, 40 min (30 min FiO2=0.21 + 10 min FiO2=0.60) at 67%

V̇ O2max

↑ n.s.

1960 vs 2140

↓n.s.

1800 vs. 1750

↓*

0.92 vs 0.82

↓*

142 vs 135

↓*

52.9 vs 48.4

HOGAN

et al. (1983) [17]

6 ♂ 0.60Cycling, incremental test: 60/15/3

↑ n.s. 3280 vs

3450→

↓*

131 vs. 107

OREN et al. (1982) [123]

5 ♂ 1.0Cycling, 4x6 min constant load (60-90W)

→↓*

HESSE

et al. (1981) [72]

6 ♂ + 1 ♀ 1.0Cycling, at 80%

V̇ O2max→

↓*

159 vs. 149

↓n.s.

79 vs. 76

↓n.s.

194 vs. 200

Page 19: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

BYRNES &

MULLIN (1981) [124]

7 ♂ 0.70Cycling, 80% V̇O2max

→ ↓n.s. ↓*

↓*

-15 S/min

↓**

-15 l/min

↑*

WILSON & WELCH (1980) [125]

10 ♂ 0.80

Running, 110%

V̇ O2max until exhaustion

↑*

ADAMS & WELCH (1980) [126]

6 ♂ 0.60

Cycling, 10 min at 55% V̇ O2max and

tlim at 90% V̇ O2max

↑**

4.8%→

↓**

129 vs. 115

↑*

WILSON & WELCH (1975) [10]

9 ♂

0.21; 0.40; 0.60; 0.80;

1.0

Running, 110%

V̇ O2max until exhaustion

→ →

WILSON et al. (1975) [127]

4 ♂ 0.60Cycling, 30 min at 40% and 80% of VO2max

↑ ↓ ↓ ↑

EKBLOM

et al. (1975) [60]

9 ♂ 0.50

Cycling, running, submaximal

↑*

1330 vs. 1550

↓*

94 vs. 89

↓n.s.

12.4 vs.

11.7

↓n.s.

31.3 vs. 30.6

↑*

94 vs. 260

↑n.s.

35 vs. 37

↓n.s.

156 vs. 153

→ →

Running, maximal↑*

12.6 %→ →

↓*

11.1 %→ →

↑*

110 vs. 120

Page 20: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

Electronic Supplementary Material Table S5: Changes in energy metabolism in response to hyperoxia (HE).

* P< 0.05; ** P < 0.01; *** P < 0.001 vs. normoxia (NO, FiO2 21% O2; n.s. = not significant.

n = number; FiO2 = oxygen content; La = blood lactate concentration; HCO3 = bicarbonate concentration; [H+] = hydrogen ion concentration; BE = base excess; FFA = free fatty acids; PCr = phosphocreatine; Acetyl CoA = acetyl-coenzyme A; CS = citrate synthase; ATP = adenosinetriphosphate; MVC = maximum voluntary contraction, WRmax = maximal work rate

Investigators n

FIO2

Study design

La Lamax pH HCO3- [H+] BE Glycogen Glucose FFA PCr

Pyruvate

Acetyl

CoACS

ATP

[%] [mmol·l-

1] [mmol·l-1] [mmol·l-1] [mmol·l-1] [mmol·kg-1] [mmol·kg-1][mmol·kg-

1] [mmol·kg-1][mmol·kg-

1][mmol·k

g-1][mmol·kg-1]

[mmol·kg-1]

ZINNER et al. (2015) [96]

10 ♂ 1.0Double poling, 3x3 min

→ →

LAYEC et al. (2015) [71]

7 ♂ + 1 ♀

1.0

Double-leg alternate knee flexion, 6 min at 25% MVC

→ →

YOKOI et al. (2014) [53]

12 ♂ 0.3

Isometric quadriceps contractions at 70% MVC (3 × 3 × no less than 30 s)

WHITE et al. (2013) [43]

10 ♂ 1.0Running, 10x3 min at 85% VO2max

SPERLICH et al. (2012) [39]

10 ♂ 1.0Cycling, 5 x 30s sprints

→ → → →

SPERLICH et al. (2011) [44]

12 ♂ 1.0

Swim bench, 5 x 50-s maximal arm strokes

→ → →

Page 21: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

PEELING & ANDERSSON (2011) [42]

5 ♂ + 2 ♀

1.0Kayak ergometer, 6x3 min

VANHATALO et al. (2010) [128]

7 ♂ 0.7Single-leg knee extensions

→ →

VOGIATZIS

et al. (2008)a [33]

7 ♂ 1.0Cycling, 5 min at 90% WRmax

↑n.s.

9.3 vs. 10.3

VOLIANITIS et al. (2008) [110]

6 ♂ 0.30Rowing, 2000 m all-out

↓ n.s.

21 vs. 18

↓ n.s.

8.5 vs. 7.3

TUCKER et al. (2007) [32]

11 ♂ 0.40Cycling, 20-km time-trial

8 ♂ 0.40Cycling, constant load until exhaustion

↓**

10 vs. 8

MARWOOD & BOWTELL (2007) [113]

8 ♂ 0.50Cycling, 6 min at 70 % V̇ O2max

↓ n.s.

AMANN et al. (2006) [22]

8 ♂ 1.0Cycling, 5-km time-trial

↓ n.s.

10.6 vs. 9.0

WILKERSON et al. (2006) [36]

7 ♂ 0.50Cycling, moderate, heavy, supra-maximal

HOUSSIERE et al. (2006) [114]

12 ♂ 1.0 Handgrip exercise, 3 min at 30% MVC

↓*

Page 22: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

2.6 vs. 2.3

STELLINGWERFF et al. (2006) [70]

7 ♂ 0.60Cycling, 40 min at 70% V̇ O2max

↓*

31.3 vs.

22.6

[mmol/

kg]

↑*

206.5 vs. 223.5

→ →

↑*

28.9 vs. 38.7

↓*

15%

↑*

23%→

STELLINGWERFF et al. (2005) [69]

10 ♂ 0.60Cycling, 15 min at 70% V̇ O2max

↓*

50.7 vs.

35.8

[mmol/kg]

↑*

226 vs. 298→ →

↑n.s.

38.4 vs.42.4

→ → →

FAVIER

et al. (2005) [78]9 ♂ 0.30

Cycling, 6 min at 50% V̇ O2max

Cycling, 5 min at 95% V̇ O2max

↑ n.s.

GRATALOUP et al. (2005) [23]

16 ♂ 0.30Cycling, incremental test: 0.333 W/min

HASELER et al. (2004) [115]

5 ♂ 1.0Gastrocnemius exercise, 5 min at 60% WRmax

↑*

7.07 vs.

7.09

NUMMELA et al. (2002) [20]

9 0.40Running, 3x3x300m

↓ n.s. → →

Page 23: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

EVES et al. (2002) [101]

25 ♂ 0.40Running, incremental test (2% / 2min)

↓*

SAVASI et al.(2002)

[129]

8 ♂ 1.0Cycling, 90 s at 90% V̇ O2max

→ → → → →

PRIEUR et al. (2002) [18]

10 ♂ 0.30

Cycling, incremental test (30W/2min)

↓ n.s. 12.8 vs

12.5

Cycling, 12 min at 40% V̇ O2max

↓ n.s.

2.2 vs. 2.0

Cycling, 12 min at 55% V̇ O2max

↓ n.s.

3.1 vs. 3.0

Cycling, 12 min at 70% V̇ O2max

↓ n.s.

3.9 vs. 3.5

Cycling, 12 min at 85% V̇ O2max

↓ n.s.

5.6 vs. 5.3

EVANS et al (2001) [130]

8 ♂ 1.0Cycling, 120 s at 65% V̇ O2max

↓* → → → →

PELTONEN et al. (2001)a [21]

11 0.32Cycling, 7-min maximal test

↓n.s.

14.9 vs 12.7

Page 24: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

LINOSSIER

et al. (2000) [28]5 ♂ 0.60

Cycling, incremental test, tlim at Wmax, 5 min at 90% Wmax

+ 10-s sprint

↓*

20%↓n.s.

↓*

530 vs. 373

↑n.s. → ↑n.s.

NIELSEN et al. (1999) [19]

11 ♂ 0.30Rowing, 6-min maximal test

→ →

↑n.s.

16.7 vs. 17.2

PELTONEN et al. (1999) [116]

5 ♂ + 1 ♀

0.29Running, 4x4 min at 50, 60, 70, 80% V̇ O2max

↓**

3.3 vs. 2.5

PEDERSEN

et al. (1999) [64]

5 ♂ + 3 ♀

0.60

Single-legged knee extension, 20 min at 70% and 100% Wmax

↓n.s. →

HOGAN

et al. (1999) [24]

3 ♂ + 3 ♀

1.0Plantar flexion, incremental test (1 W/ 2 min)

→ ↑n.s. →

NIELSEN et al. (1998) [102]

8 ♂ 0.30Rowing, 6-min maximal test

→ → → →

HASELER et al. (1998) [51]

6 ♂ 1.0Plantar flexion, 10 min at 60% Wmax

↑*

65.7 vs. 72.6

PELTONEN et al. (1997) [30]

6 ♂ 0.62

Rowing, 2,500-m time-trial

↓n.s.

13.7 vs.

13.2

STRÜDER 8 ♂ 1.0 30-min rest ↑ n.s. ↑ n.s.

Page 25: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

et al. (1996) [117]

Cycling, 60 min submaximal

↑n.s. ↑n.s.

PLOUTZ-SNYDER

et al. (1996) [31]

10 ♂ 0.70

Cycling, incremental test: 35W+ 35W/ 2 min

↓*

↓*

3.0 vs. 1.7

↑n.s.

KNIGHT et al. (1996) [26] 11 ♂ 1.0

Cycling, incremental test: 20%, 35%, 50%, 92%, 100% of Pmax

↓*

6.7 vs. 5.8

↓*

9.5 vs. 8.5

PELTONEN et al. (1995) [12]

6 ♂ 0.62Rowing, 2500-m time-trial

MATEIKA & DUFFIN (1994) [35]

7 ♂ 0.66Running, incremental test

↓*

7.89 vs 7.54

→ ↑n.s.

KNIGHT et al. (1993) [27]

11 ♂ 1.0

Cycling, incr. test: 20%, 35%, 50%, 92%, 100% of Pmax

↓n.s.

9.5 vs. 8.5

PLET et al. (1992) [16]

5 ♂ + 6 ♀

0.55Cycling, 10 min at 80% V̇ O2max

↓*

10.6 vs 9.3

↓ n.s. -0.5

↓ * -1.3↓n.s. → →

GRAHAM et al. (1987) [15]

6 ♂

0.60

Cycling, 40 min 70-75%

V̇ O2max

↓*

0.60Cycling, 30 min 75-80% V̇ O2max

↓*

Page 26: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

ADAMS et al. (1986) [121]

6 ♂ 0.61Cycling, 30 min at 77% V̇ O2max

↓*

4.8 vs. 3.9

→ →

BYRNES

et al. (1984) [122]

6 ♂ 0.70Cycling, incremental test (33 W/ 3 min)

↓*

28%→

Cycling, 20 min at 75% V̇ O2max

HOGAN

et al. (1983) [17]6 ♂ 0.60

Cycling, incremental test: 60 W, )= W, 105 W + 15W/3 min

↓**

8.6 vs 7.5

HOWLEY et al. (1983) [73]

4 ♂ + 2 ♀

0.60

Cycling, 40 min (30 min FiO2=0.21 + 10 min FiO2=0.60) at 67% V̇ O2max

↓*

2.9 vs 2.2

↓n.s.

0.97 vs. 0.86

GRAHAM & WILSON (1983) [15]

1 ♂ + 4 ♀

0.60Cycling, 30 min at 65% V̇ O2max

↓*

3.95 vs.

3.17

↑n.s.

↑*

43.4 vs. 44.9

HESSE

et al. (1981) [72]

6 ♂ + 1 ♀

1.0Cycling, at 80%

V̇ O2max

↓*

3.14 vs.

2.07

BYRNES &

MULLIN (1981) [124]

7 ♂ 0.70Cycling, 80% V̇O2max

↓** →

Page 27: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

ADAMS & WELCH (1980) [126]

6 ♂ 0.60

Cycling, 10 min at 55% V̇ O2max andtlim at 90% V̇O2max

→ → → ↑n.s.

EKBLOM et al. (1975) [60]

9 ♂ 0.50

Cycling, running, submaximal

↓*

4.0 vs.

2.0

Running, maximal

↓*

13.0 vs.10.9

Page 28: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

Electronic Supplementary Material Table S6: Responses of the central and peripheral nervous systems to hyperoxia (HE) and ratings of perceived exertion.

* = P< 0.05; ** = P < 0.01; *** = P < 0.001 vs. normoxia (NO, FiO2 = 0.2095); n.s. = not significant.

n = number; FiO2 = oxygen content; MVC = maximal voluntary contraction; MSNA = muscular sympathetic nerve activity; iEMG = integrated electromyographic activity; texh/lim = time to exhaustion; CC = carotid chemoreceptor sensitivity; NE = norepinephrine; E = epinephrine; PRL = prolactin; PE-CA = postexercise circulatory arrest

Investigators n

FIO2

Study Design

Perceived exertion

MVCMSN

AiEMG

Reaction time

texh CC NE E PRLMotor Time

Premotor Time

[%] [N] [bursts/ min-1]

[% MVC] [ms] [ms]

ZINNER et al. (2015) [96]

10 ♂ 1.0Double poling, 3x3 min all-out

LAYEC et al. (2015) [71]

7 ♂ + 1 ♀ 1.0Double-leg alternate knee flexion, 6 min at 25% MVC

YOKOI et al. (2014) [53]

12 ♂ 0.3

Isometric quadriceps contractions at 70% MVC (3 × 3 × no less than 30 s)

OUSSAIDENE et al. (2013) [29]

8 ♂ 0.3 Cycling, ramp test →

WHITE et al. (2013) [43]

10 ♂ 1.0Running, 10x3 min at 85% VO2max

SPERLICH et al. (2012) [39]

10 ♂ 1.0Cycling, 5 x 30-s sprints

↓*

SPERLICH et al. (2011) [44]

12 ♂ 1.0Swim bench, 5 x 50-s maximal arm strokes

↓* →

Page 29: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

PEELING & ANDERSSON (2011) [42]

5 ♂ + 2 ♀ 1.0Kayak ergometer, 6x3 min

ANDO et al. (2009) [109]

12 ♂ 0.28

Cycling,

5 min at 100 W→ ↓ n.s. ↓*

Cycling,

5 min at 150 W→ ↓ n.s. ↓*

Cycling,

5 min at 200 W→ ↓ n.s. ↓ n.s.

SEGIZBAEVA & ALEKSANDROVA (2009) [97]

8 ♂ 1.0Cycling, incremental test + 30 W/3 min

↑n.s.

VANHATALO et al. (2010) [128]

7 ♂ 0.7Single-leg knee extensions

↑*

280 vs. 332

AMANN et al. (2008) [112]

8 ♂ 1.0

Cycling, constant load until exhaustion

↑*

123%

Cycling, 5-km time- trial

↑ *

4.1%

STICKLAND et al. (2008) [111]

7 ♂ 1.0Handgrip exercise at 50% MVC

↓*

37 vs. 30

↓*

KATAYAMA et al. (2007) [131]

6 ♂ 1.0 m. quadriceps femoris, 3x9 submaximal isometric contractions

→ →

Page 30: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

TUCKER et al. (2007) [32]

11 ♂ 0.40Cycling, 20-km time-trial

↑n.s.↑**

5%

8 ♂ 0.40Cycling, constant load until exhaustion

↑*

27 vs. 32

AMANN et al. (2006) [22]

8 ♂ 1.0Cycling, 5-km time-trial

↑*

29 vs. 36

STELLINGWERFF et al. (2006) [70]

7 ♂ 0.60Cycling, 40 min at 70% V̇ O2max

↓*

44%

HOUSSIERE et al. (2006) [114]

12 ♂ 1.0

rest

↓*

23 vs. 19

↓ n.s.

Handgrip exercise, 3 min at 30% MVC

↓n.s.

41 vs. 38

↓ n.s.

3 min PE-CA

↓n.s.

3 vs.32

↓ n.s.

WILKERSON et al. (2006) [36]

7 ♂ 0.50Cycling, moderate, heavy, supra-maximal

↑*

15%

LINOSSIER et al. (2000) [28]

5 ♂ 0.60

Cycling, incremental test, tlim at Wmax, 5 min at 90% Wmax + 10-s sprint

↑*

5.5 vs. 7.9 min

Page 31: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

NIELSEN et al. (1999) [19]

11 ♂ 0.30Rowing, 6-min maximal test

↓ n.s.

121.7 vs. 109.8

[nM]

↓ n.s.

36.4 vs. 34.8

[nM]

PEDERSEN et al. (1999) [64]

5 ♂ + 3 ♀ 0.60Single-legged knee extension, 20 min at 70% and 100% Wmax

↑*

+1.5 min

HOGAN et al. (1999) [24]

3 ♂ + 3 ♀ 1.0Plantar flexion, incremental test (1 W/ 2 min)

↑**

21 vs. 24 min

PELTONEN et al. (1997) [30]

6 ♂ 0.62Rowing, 2,500-m time- trial

STRÜDER et al. (1996) [117]

8 ♂ 1.0

Rest/baseline

↓ n.s.

0.4 vs. 0.3

[ng.ml-1]

↑*

0.1 vs 0.43

[ng.ml-1]

Cycling, 60 min submaximal

→ ↑ n.s. ↑ n.s. ↓ n.s.

MATEIKA & DUFFIN (1994) [35]

7 ♂ 0.66Running, incremental test

↑*

12 vs 13.6

41%

↓ n.s.

PLET et al. (1992) [16] 5 ♂ + 6 ♀ 0.55 Cycling, 10 min at 80% V̇ O2max

↑*

♂ 30.5 vs 46.2 min

♀ 26.5 vs. 35.3 min

↓*

3.03 vs.1.56

[nmol·l-1]

↑ n.s.

0.76 vs. 0.83

[nmol·l-1]

Page 32: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

SEALS et al. (1991) [119]

7 ♂ 1.0

Rest/baseline ↓* → →

Handgrip exercise, maximal (3-4 min at 50% max)

→ →

EIKEN & TESCH (1984) [103]

8 0.99

One-legged quadriceps contractions, 60 maximal, dynamic

↑n.s.→

189 vs. 169 s

Cycling, 20 min at 75% V̇ O2max

BYRNES et al. (1984) [122]

6 ♂0.70

0.70

Cycling, incremental test: 33 W/ 3 min

↓*

26%

↓*

37%

Cycling, 20 min at 75% V̇ O2max

↓n.s. ↓n.s.

HOWLEY et al. (1983) [73]

4 ♂ + 2 ♀ 0.60

Cycling, 40 min (30 min FiO2=0.21 + 10 min FiO2=0.60) at 67% V̇ O2max

↓ n.s.

0.23 vs.0. 18

[ng·ml-1]

↓*

1.42 vs. 1.05

[ng·ml-1]

HESSE et al. (1981) [72]

6 ♂ + 1 ♀ 1.0Cycling, at 80% V̇O2max

↓*

2.19 vs.1.44

[ng·ml-1]

↓*

0.30 vs. 0.13

[ng·ml-1]

WILSON & WELCH (1980) [125]

10 ♂ 0.80 Running, 110% V̇O2max until exhaustion

↑**

+52 s

Page 33: 40279_2016_590_MOESM1_ESM.docx - Springer …10.1007... · Web viewCycling, ramp test ↑* 302 vs. 319 SPERLICH et al. (2012) [] 10 1.0 Cycling, 5 x 30-s sprints → → SPERLICH

ADAMS & WELCH (1980) [126]

6 ♂ 0.60

Cycling, 10 min at 55% V̇ O2max and tlim

at 90% V̇ O2max

↑*

+3.3 min

WILSON & WELCH (1975) [10]

9

0.21; 0.40; 0.60; 0.80;

1.0

Running, 110% V̇O2max until exhaustion

↑* 18% with 0.4

↑** 22% with 0.6

29% with 0.8

38% with 1.0

EKBLOM et al. (1975) [60]

9 ♂ 0.50Cycling, running, submaximal

↑*

5.9 vs. 9.9 min