3DP.1.3 Fthenakis Valencia 2010

download 3DP.1.3 Fthenakis Valencia 2010

of 24

Transcript of 3DP.1.3 Fthenakis Valencia 2010

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    1/24

    1

    Environmental Aspects of Thin Film ModuleProduction and Product Lifetime

    Environmental Aspects of Thin Film ModuleProduction and Product Lifetime

    Vasilis FthenakisPV Environmental Research Center

    Brookhaven National Laboratory

    andCenter for Life Cycle Analysis

    Columbia University

    Invited Plenary Presentation at the 25th European Photovoltaic SolarEnergy Conference, Valencia, September 9, 2010

    email: [email protected]

    web: www.pv.bnl.gov

    www.clca.columbia.edu

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    2/24

    2

    PV Sustainability CriteriaPV Sustainability Criteria

    Photovoltaics are required to meet the need for abundant

    electricity generation at competitive costs, whilst conserving

    resources for future generations, and having environmentalimpacts lower than those of alternative future energy-

    options

    Sustainability Metrics:

    Low Cost

    Resource Availability

    Minimum Environmental Impact

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    3/24

    3

    Thin-Film PV -The Triangle of SuccessThin-Film PV -The Triangle of Success

    Low Cost

    Affordability in a

    competitive world

    Affordability in aAffordability in a

    competitive worldcompetitive world

    ResourceAvailability

    LowestEnvironmental Impact

    Cd in CdTe & CIGS

    NF3 in a-Si/mc-Si

    Cd in CdTe & CIGSCd in CdTe & CIGS

    NFNF33 in ain a--SiSi/mc/mc--SiSi

    Tellurium in CdTe

    Indium in CIGS

    Germanium in a-SiGe

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    4/244

    Tellurium for PV* from Copper SmeltersTellurium for PV* from Copper Smelters

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    5000

    2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

    Te(

    MT/yr)

    Tellurium Availability for PV* (MT/yr)

    Low

    High

    Global Efficiency of Extracting Te from anode slimes increases to 80% by 2030 (low scenario);

    90% by 2040 (high scenario)* 322 MT/yr Te demand for other uses has been subtracted

    Fthenakis, Renewable & Sustainable Energy Reviews, 2009

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    5/245

    Te Availability for PV:Primary + RecycledTe Availability for PV:Primary + Recycled

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    5000

    2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

    Te(

    MT/yr)

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    5000

    2

    Te(

    MT/yr)

    2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

    Tellurium Availability for PV (MT/yr)

    Low

    HighRecycling every 30-yrs

    10% loss in collection10% loss in recycling

    Recycling every 30Recycling every 30--yrsyrs10% loss in collection10% loss in collection10% loss in recycling10% loss in recycling

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    6/246

    Assumptions for Thin-Film PV GrowthAssumptions for Thin-Film PV Growth

    PV Type Efficiency (%)

    2008 2020

    Conservative Most

    likely

    Optimistic

    CdTe 10.8 12.3 13.2 14

    CIGS 11.2 14 15.9 16.3

    a-Si-Ge 6.7 9 9.7 10

    Fthenakis, Renewable & Sustainable Energy Reviews, 2009

    Update 2010

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    7/247

    Assumptions for Thin-Film PV GrowthAssumptions for Thin-Film PV Growth

    PV Type Efficiency (%)Efficiency (%)Efficiency (%) Layer Thickness (m)

    200820082008 202020202020 2008 2020

    ConservativeConservativeConservative MostMostMost

    likelylikelylikely

    OptimisticOptimisticOptimistic Conservative Mostlikely

    Optimistic

    CdTe 10.810.810.8 12.312.312.3 13.213.213.2 141414 3.3 2.5 1.5 1.

    CIGS 11.211.211.2 141414 15.915.915.9 16.316.316.3 1.6 1.2 1. 0.8

    a-Si-Ge 6.76.76.7 999 9.79.79.7 101010 1.2 1.2 1.1 1.

    Fthenakis, Renewable & Sustainable Energy Reviews, 2009

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    8/248

    CdTe PV Annual Production ConstraintsCdTe PV Annual Production Constraints

    CdTe PV (GW/yr)

    Most likely

    Optimistic

    Conservative0

    50

    100

    150

    200

    250

    2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

    CdTePV(GW/yr)

    Conservative

    Most likely

    Optimistic

    Production can increasewith direct miningstarting at ~2015

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    9/249

    CIGS Material-based Growth Constraints*CIGS Material-based Growth Constraints*

    CIGS PV (GW/yr)

    0

    50

    100

    150

    200

    250

    2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

    CIGSPV(G

    W/yr)

    Conservative

    Most likely

    Optimistic

    * 1/2 of In production growth is allocated to PVFthenakis, IEEE PVSC, June 23, 2010

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    10/24

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    11/2411

    CdTe PV Product Life Accidental ReleasesCdTe PV Product Life Accidental Releases

    PV Roof-top fires

    Negligible emissions during fires

    Fthenakis, Renewable and Sustainable Energy Reviews, 2004,

    Fthenakis et al., Progress in Photovoltaics, 2005

    Based on standard protocols by the ASTM and ULExpert Peer reviews by:

    BNL, US-DOE, 2004

    EC-JRC, 2004German Ministry of the Environment, (BMU), 2005

    French Ministry of Ecology, Energy, 2009

    Based on standard protocols by the ASTM and ULExpert Peer reviews by:

    BNL, US-DOE, 2004

    EC-JRC, 2004German Ministry of the Environment, (BMU), 2005

    French Ministry of Ecology, Energy, 2009

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    12/2412

    CdTe PV Fire-Simulation Tests: XRF AnalysisCdTe PV Fire-Simulation Tests: XRF Analysis

    -4

    -3.5

    -3

    -2.5

    -2

    -1.5

    -1

    -0.5

    0

    0 10000 20000 30000

    Cd(counts)

    position(mm)

    -4.5

    -4

    -3.5

    -3

    -2.5

    -2

    -1.5

    -1

    -0.5

    0

    0 10000 20000 30000

    Cd(counts)

    position(mm

    -8

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    0

    0 5000 10000

    Cd(counts)

    position(mm

    XRF-micro-probing

    Cd Distribution in PV Glass

    1000 C, right end of sample

    XRF-micro-spectroscopy -Cd Mapping in PV Glass

    1000 C, Section taken from middle of sample

    Heat

    Fthenakis, Fuhrman, Heiser, Lanzirotti, Fitts and Wang, Progress in Photovoltaics, 2005

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    13/24

    13

    CdTe PV Product Life Accidental ReleasesCdTe PV Product Life Accidental Releases

    Leaching from shuttered modules 10 mm fragments -Rain-worst-case scenario- leached Cd concentration in the

    collected water is no higher than the German drinking water concentration.

    (Steinberger, Frauhoffer Institute Solid State Technology, Progress in Photovoltaics, 1998)

    < 4 mm fragments Leached Cd exceeds the limits for disposal in inert landfill but

    is lower than limits for ordinary landfills

    (Okkenhaug, Norgegian Geotechnical Institute, Report, 2010)

    Uncontrolled dumping of CdTe-moduleswill result in greater environmental riskscompared with disposal in approvedlandfill sites

    Uncontrolled dumping of CdTe-moduleswill result in greater environmental riskscompared with disposal in approvedlandfill sites

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    14/24

    14

    CdTe PV Product Life Accidental ReleasesCdTe PV Product Life Accidental Releases

    Leaching from shuttered modules 10 mm fragments -Rain-worst-case scenario- leached Cd concentration in the

    collected water is no higher than the German drinking water concentration.

    (Steinberger, Frauhoffer Institute Solid State Technology, Progress in Photovoltaics, 1998)

    < 4 mm fragments Leached Cd exceeds the limits for disposal in inert landfill but

    is lower than limits for ordinary landfills

    (Okkenhaug, Norgegian Geotechnical Institute, Report, 2010)

    < 2 mm fragments CdTe PV sample failed California TTLC and STLC tests

    (Sierra Analytical Labs for the Non-Toxic Solar Alliance, 2010)

    All PV modules would fail the California tests

    c-Si for Ag, Pb, and Cu (ribbon),

    CIGS for Se; a-Si marginally for Ag

    Eberspacher & Fthenakis, 26th IEEEPVSC,1997; Eberspacher 1998

    All PV modules would fail the California tests

    c-Si for Ag, Pb, and Cu (ribbon),CIGS for Se; a-Si marginally for Ag

    Eberspacher & Fthenakis, 26th IEEEPVSC,1997; Eberspacher 1998

    We advocate for all PV modules tobe recycled at the end of their lifeWe advocate for all PV modules tobe recycled at the end of their life

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    15/24

    15

    The Triangle of SuccessThe Triangle of Success

    Low Cost

    Recycling

    LowestEnvironmental Impact

    ResourceAvailability

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    16/24

    16

    Atmospheric Cd Emissions from the Life-Cycle of CdTe PV ModulesReference CaseAtmospheric Cd Emissions from the Life-

    Cycle of CdTe PV ModulesReference Case

    Process (g Cd/ton Cd*) (% ) (mg Cd/GWh)

    1. Mining of Zn ores 2.7 0.58 0.02

    2. Zn Smelting/Refining 40 0.58 0.303. Cd purification 6 100 7.79

    4. CdTe Production 6 100 7.79

    5. CdTe PV Manufacturing 0.4* 100 0.52*

    6. CdTe PV Operation 0.05 100 0.067. CdTe PV Recycling 0.1* 100 0.13*

    TOTAL EMISSIONS 16.55

    Plus 200 mg Cd/GWh fromfossil fuels in the electricitymix in the life-cycle of CdTePV

    Plus 200 mg Cd/GWh fromfossil fuels in the electricitymix in the life-cycle of CdTePV

    Fthenakis V. Renewable and Sustainable Energy Reviews, 8, 303-334, 2004* 2009 updates

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    17/24

    17

    Total Life-Cycle Cd Atmospheric EmissionsTotal Life-Cycle Cd Atmospheric Emissions

    3.7

    0.3

    44.3

    0.90

    10

    20

    30

    40

    50

    0.4 0.7 0.6 0.2

    bbon

    -Si

    mon

    o-Si

    mc-Si

    CdT

    eCoal

    Natural

    Gas O

    il

    Nuclear

    gCd/GWh

    ri

    Fthenakis and Kim, Thin-Solid Films, 515(15), 5961, 2007

    Fthenakis, Kim & Alsema, Environ. Sci. Technol, 42, 2168, 2008

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    18/24

    18

    GHGs Used in PV Module ManufacturingGHGs Used in PV Module Manufacturing

    Substance Source

    CF4 c-Si surface etching

    C2F6 c-Si reactor cleaning

    SF6 a-Si/nc-Si reactor cleaningNF3 a-Si/nc-Si reactor cleaning

    Weiss et al (2008), Nitrogen trifluoridein the global atmosphere, GeophysicalResearch Letters, 2008

    PV: climate killer?

    The NF3 storyPhoton Magazine, December 2008

    PV: climate killer?

    The NF3 storyPhoton Magazine, December 2008

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    19/24

    19

    NF3 Emissions in a-Si/nc-Si PV Life-CyclesNF3 Emissions in a-Si/nc-Si PV Life-Cycles

    Analysis based on detailed data from

    Air Products NF3 Production

    Applied Materials NF3 Use in PV

    Qualitative information from Kanto Denka - NF3 Production Oerlikon NF3 Use in PV

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    20/24

    20

    Trends in NF3 Production and Emission FactorsTrends in NF3 Production and Emission Factors

    NF3 Emission Factor Relative to Global Production 2000 2008

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    2000 2001 2002 2003 2004 2005 2006 2007 2008

    Global NF3 Manufacturing Capacity (Metric tons)

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

    Source: R. Ridgeway, Air Products

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    21/24

    21

    Emission Trends in NF3 ManufacturingEmission Trends in NF3 Manufacturing

    Known NF3 Emission Factors

    0.0%

    0.1%

    0.2%

    0.3%

    0.4%

    0.5%

    0.6%

    0.7%

    0.8%

    NF3 Dryer

    Losses

    NF3 Reactor

    Losses

    NF3 Liquifier

    Losses

    NF3 Analytical

    Losses

    All Other Vents

    EmissionFactors(%)

    Mar-09

    Apr-10

    Target

    Source: R. Ridgeway, Air Products

    NF3 E i i M t i T i lNF3 E i i M t i T i l

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    22/24

    22

    NF3 Emission Measurements in Typicala-Si and tandem Si PV FabsNF3 Emission Measurements in Typicala-Si and tandem Si PV Fabs

    Factory Source avg NF3Conc(ppm)

    DRE

    (%)

    Emission

    Factor

    (%)A Applied Materials 1.0 99.98 0.02

    B Applied Materials 8.5 99.90 0.1

    C Applied Materials 27.5 99.75 0.25

    D Third Party 2.0 99.98 0.02

    E Third Party 8.6 99.90 0.1

    F Third Party 11.0 99.87 0.13Average 99.89 0.11

    For average U.S. insolation (1800 kWh/m2/y) NF3 life-cycle emissions add 2 - 7 g/kWh of CO2-eq

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    23/24

    23

    ConclusionConclusion

    Thin-film PV can reach very high rates of growth withoutbeing impaired from material availability issues.

    Recycling spent modules will become increasinglyimportant in resolving cost, resource, and environmental

    constraints to large scales of sustainable growth.

    The controlled use of NF3 in the a-Si/nc-Si PV industry willnot alter the environmental benefits of PV replacing fossilfuels if best practices are adopted globally.

    Email: [email protected]

    www.pv.bnl.gov

  • 7/27/2019 3DP.1.3 Fthenakis Valencia 2010

    24/24

    24

    AcknowledgmentAcknowledgment

    Support from US-DOE, Solar Technologies Program Jeff Britt - Global Solar Jun Ki Choi, Huyng Chul Kim BNL Daniel Clark, Mehran Moalem Applied Materials Al Compaan U. Toledo Xunming Deng Xunlight Subhendu Guha - Uni-Solar D.R. Nagaraj - Cytec Funsho Ojebuoboh, Alex Heard, Dave Eaglesham, Tim Mays, Lisa Krueger

    -First Solar Robert Ridgeway Air Products Jim Sites Colorado State U. Bill Stanbery -HelioVolt Marc Suys, 5NPlus

    Bolko von Roedern NREL Ken Zweibel George Washington U.

    email: [email protected]: www.pv.bnl.gov