2.+Biological+basics_cells

27
Overview of Cellular & Molecular Biology Engineering Analysis Shuler, Ch 2: An overview of Biological Basics

description

biologics

Transcript of 2.+Biological+basics_cells

Overview  of  Cellular  &  Molecular  Biology  

 Engineering  Analysis  

 Shuler,  Ch  2:  An  overview  of  Biological  Basics    

The  domains  of  life  

Prokaryotes  

Eukaryotes  

Eubacteria  (bacteria)    Arechaebacteria  (archae)  

Single-­‐cell      mulGcellular  

Single-­‐cell      Single-­‐cell  

Similar  metabolism  

Similar  gene  expression  

Similar  biotech  tools  

Universal  features  of  a  living  organism  

•  Barrier,  eg,  lipid  bilayer  membrane  •  Energy  conversion,  eg,  electron  transfer  

and  energy  capture  mechanisms  (light,  inorganic/  organic  chemicals)  

•  Catabolism  and  anabolism,  convert  organic  compounds  to  construct  building  blocks  

•  Transport  system,  to  control  import/  export  of  materials  and  signals  

•  Reproduc9ve  informa9on:  to  reproduce  with  high  fidelity  yet  allow  flexibility  to  evolve  

•  Conserved  features:  evoluGon  not  revoluGon  

 

MAIN  DIFFERENCES  BETWEEN  PROKARYOTIC  AND  EUKARYOTIC  CELLS:  

1.  Chemical  components  of  the  cell  wall  

2.  Nucleus  containing  chromosomal  DNA    

3.  Subcellular  organelles  in  the  cytoplasm  

Engineering  math  

– Mass  balances  – Mass  acGon  kineGcs    – ReacGon  stoichiometry  – Separable  differenGal  equaGons  

Engineering analysis: Material & energy balances

•  Help account for what is changing in a process

PROCESS  IN OUT

Examples:

•  Corn ethanol as biofuel, how much corn, energy and water are needed to produce 100 M gallons/ year?

• A patient is on kidney dialysis – for a given transfer rate and blood composition, how long do they need to be attached to the machine?

Engineering  analysis  •  Help account for what is changing in a process

PROCESS Generation, consumption

Accumulation = In – Out + Generation – Consumption Accumulation = 0 è steady state EXAMPLES: bank account; population of a city, mass of a person Need to quantify IN & OUT (using process variables), not always the same units (convert)

IN OUT

Input = People  moving  in   Output = People  moving  out  

Generation = Births  

Consumption = Deaths  

Accumulation = Change  in  populaGon  

Example - New York City

AccumulaGon  =  In  –  Out  +  GeneraGon  –  ConsumpGon  

Corn Ethanol Process

Energy

Corn 100,000 bushels/day (energy, water to produce) Ethanol

275,000 gallons/day

Distiller Dry Grain (waste yeast/corn) 860 tons/day CO2

Water

Yeast & enzymes

•  ANNUAL capacity in 2008 of 8 Billion gallons, expected to be 11 Billion Gallons by 2011 which means 4 billion bushels of corn by 2011 •  DAILY usage of gasoline in US is 390 million gallons/day in 2007!!

What  closed  system  to  use  ?  

Corn Ethanol Process

Mill Corn

Water Enzymes

(glucoamylase)

Slurry Tank Liquefaction Cooler

Yeast & Enzymes (α-amylase)

Fermentation

Distillation Whole stillage to dryer

CO2

Molecular Sieve DDG

200 Proof ** Ethanol

What  closed  system  to  use  ?  

Stoichiometric  calcula9on  of  biological  reac9ons  

Cell  composiGon  

C  Hx  Ny  Oz      (someGmes  C  Hx  Ny  Oz  Pw  )    1  mol  of  biological  material  is  defined  as  the  amount  containing  1  mol  of  C      Examples  Bacteria  x=1.6  to  2  

   y=0.2  to  0.26      z=0.27  to  0.45  

C  H1.6  N0.2  O0.27    Animal  C  H1.98  N0.26  O0.49    

Cellular  building  blocks  ChEn 3701 8/22/2006

Prof. W-S Hu Lecture Notes 4

Average Composition of a Cell (pg/cell)

Animal cell Bacteria

Wet weight 3500 1.5

Dry weight 600 0.3

Protein 250 0.17

Carbohydrate 150 0.015

Lipid 120 0.015

DNA 10 0.015

RNA 25 0.075

Water 1.2

Volume 4 x 10-9 cm3

Typical Elemental composition (%of dry mass)

Other mineralsSPONHC

0.51329748Yeast

82513750Bacteria

• Genetic code– DNA as heritable information storage– Universal (almost) linear chemical code

• Information processing of life– DNA replication: Templated polymerization to

replicate heritable information – Transcription– Translation

nucleotide DNA

mRNA

proteinAmino-acids

tRNA rRNA

Gene: functional unit of genetic information• Old dogma:

- one gene, one protein, - now overlapping segments of DNA for different proteins

• Gene: segment of DNA sequence corresponding to a single protein (or to a single catalytic or structural RNA molecule)

•  Carbohydrates  (monosaccharides);  l-­‐amino  acids;  nucleoGdes;  fajy  acids/  lipids  •  Monomers  polymerize  to  make  more  complex  structures  (eg,  protein,  cell  membrane)  

•  You  can  measure  cells  (dry  weight)  –  if  you  can  write  mtl  balance  for  main  IN  and  OUT,  you  can  obtain  the  elemental  composiGon  

Engineering analysis of a cell Glucose  (C6H12O6)  and  ammonia  (NH3)  form  a  sterile  soluGon  (no  live  cells)  fed  conGnuously  into  a  vessel  containing  a  microorganism.  Assume  complete  bio-­‐reacGon.   The   product   formed   from   the   reacGon   contains   ethanol,   cells  (CH1.8O0.5N0.2   )   and   water.   The   gas   produced   is   CO2   .   If   the   reacGon   occurs  anaerobically  (without  the  presence  of  oxygen)  what  is  the  minimum  amount  of  kg  of  feed  (glucose  and  ammonia)  required  to  produce  4.6  kg  of  ethanol  ?  Only  60  %  of  the  moles  of  glucose  are  converted  to  ethanol.    

cell

IN OUT

 

o     Bacteria  

o     Fungi  (yeast,  molds)  

o     Cell  lines:  insect,  plants  and  mammalian  

o     MulGcellular  organisms:  plants  or  animals    

o     Viruses:  insect,  plants  and  mammalian  

 

BIOLOGICAL  SYSTEMS  USED  IN  BIOTECHNOLOGY    

Viruses    

•   Very  small  (30  to  200  nm)  •   Parasites:  FuncGon  only  inside  other  cells  •   Use  either  DNA  or  RNA  as  geneGc  material  •   Viruses  infect  other  cells  and  can  alter  the    hosts’  DNA  

     

•   Vectors  for  recombinant  DNA  technology  •   Vaccines:  weakened  or  dead  virus  •   Drug  discovery:  anGviral  agents  

Importance  in  Biotechnology  

Typical  bacterial  cell  

ChEn 3701 8/22/2006

Prof. W-S Hu Lecture Notes 1

Structure of the cells:chemical bonds, materials,

organelles and cells

ChEn 3701, Fall 2006Topic 2

Three Domains of life

Prokaryotes

Eukaryotes

Eubacteria(bacteria)

Archaebacteria(archae)

Similar in metabolism

Similar in gene expression machinery

Single-cell

multicellular

Unicellular

No organelles, no compartmentalized membrane enclosed space

(lipid bilayer)

(not lipid bilayer)

Sieve barrier

Gram-positive and negative bacteria

Two  flavors:  gram-­‐posiGve  (one  membrane)    and  gram-­‐nega9ve  (two  membranes,  E.  coli)  

Staphylococcus

Gram positive

E. coli

Gram negative

Peptydoglycan (cell wall)!

Plasma membrane!

Peptydoglycan !

Plasma membrane!Periplasm!Lipopolysaccharide & prot!(Outer membrane)!

Gram  negaGve  

Moving  beyond  single  bacterial  cells:  EukaryoGc  cells  

•  Compartmentaliza9on:  space  and  funcGon  (organelles)  

•  Increased  gene9c  complexity  (combinatorial  gene  regulaGon,  epigeneGcs)  

•  Differen9a9on:  distribuGon  of  funcGons  in  Gme  and  space  

•  Development  into  mulG-­‐cellular  organisms,  Gssues,  organs:  survival  based  on  organisms,  not  cell  

 

CompartmentalizaGon  

ChEn 3701 8/22/2006

Prof. W-S Hu Lecture Notes 3

Moving beyond simple microbial cells

1. Compartmentalization in space and function:-organelles

2. Differentiation:-distribution of functions in space and time (e.g. spores)

3. Increased genetic complexity -ploidity, combinatorial gene regulation

4. Development into tissue, organs, and multicellular organisms

-Survival is based on “organism” not “cells.”

Differentiation: ExampleLife Cycle of Streptomycetes-a soil bacterium

10 hours

18 hours 30 hours

2 Days

3 Days4 to 10 Days

Free spore

Adapted from Schauer et al., 1988

Even some bacteria can differentiate, e.g. Streptomyces, Bacillus can form spores. Mold (an eukaryote) can also sporulate.

Compartmentalization of Space for Specialiased Functions

Filamentous Cytoskeleton

CiliaPlasma

MembranePeroxisome

NucleusNucleolus

Smooth Endoplasmic Reticulum

Mitochondrion

Golgi Vesicles

Small Membrane Vesicles

Lysosome

Centrioles

Rough Endoplasmic

Reticulum

Animal CellEukaryo9c  cell  

DifferenGaGon    

ChEn 3701 8/22/2006

Prof. W-S Hu Lecture Notes 3

Moving beyond simple microbial cells

1. Compartmentalization in space and function:-organelles

2. Differentiation:-distribution of functions in space and time (e.g. spores)

3. Increased genetic complexity -ploidity, combinatorial gene regulation

4. Development into tissue, organs, and multicellular organisms

-Survival is based on “organism” not “cells.”

Differentiation: ExampleLife Cycle of Streptomycetes-a soil bacterium

10 hours

18 hours 30 hours

2 Days

3 Days4 to 10 Days

Free spore

Adapted from Schauer et al., 1988

Even some bacteria can differentiate, e.g. Streptomyces, Bacillus can form spores. Mold (an eukaryote) can also sporulate.

Compartmentalization of Space for Specialiased Functions

Filamentous Cytoskeleton

CiliaPlasma

MembranePeroxisome

NucleusNucleolus

Smooth Endoplasmic Reticulum

Mitochondrion

Golgi Vesicles

Small Membrane Vesicles

Lysosome

Centrioles

Rough Endoplasmic

Reticulum

Animal Cell

Spore-­‐forming  bacteria  (eg,  Bacillus,  Streptomyces)  

InformaGon  processing  

ChEn 3701 8/22/2006

Prof. W-S Hu Lecture Notes 4

Average Composition of a Cell (pg/cell)

Animal cell Bacteria

Wet weight 3500 1.5

Dry weight 600 0.3

Protein 250 0.17

Carbohydrate 150 0.015

Lipid 120 0.015

DNA 10 0.015

RNA 25 0.075

Water 1.2

Volume 4 x 10-9 cm3

Typical Elemental composition (%of dry mass)

Other mineralsSPONHC

0.51329748Yeast

82513750Bacteria

• Genetic code– DNA as heritable information storage– Universal (almost) linear chemical code

• Information processing of life– DNA replication: Templated polymerization to

replicate heritable information – Transcription– Translation

nucleotide DNA

mRNA

proteinAmino-acids

tRNA rRNA

Gene: functional unit of genetic information• Old dogma:

- one gene, one protein, - now overlapping segments of DNA for different proteins

• Gene: segment of DNA sequence corresponding to a single protein (or to a single catalytic or structural RNA molecule)

What  is  a  gene?  

Genome  size  of  some  organisms  

ChEn 3701 8/22/2006

Prof. W-S Hu Lecture Notes 4

Sex (mating type) Enhances Genetic Material Exchange

Sex also introduces ploidity. Bacteria also have more primitive form of sex, but not ploidity

Yeast can differentiate as well as having different ploidity in their life cycle

AutosomeSex chromosome Autosomes: 22 parental, 22

maternal

Combinatorial assortment in meiosis: among the autoxomes somroriganate from paternal, others maternal

Diploidity greatly increases genetic diversification among individuals in a population

Biological Scales: LengthOther scales: time, mass, “complexity”, genome Genome Size of Some Organisms

5.0x 109Hordeum vulgare(Barlay)

25,000-28,000

35,000-50,000

7000

4300

Estimate Number of Genes

1.3 x 108Arabidopsis thalianaFlowering plant

3.3 x 109H. sapiensMammal

3.1 x 109X. laevisAmphibian

1.2 x 109G. domesticusBird

1.4 x 108D. melanogasterInsect

8.0 x 107C. elegansNematode

5.4 x 107D. discoideumSlime mold

1.21 x 107S. cerevisiaeYeast

4.2 x 106Bacillus subtilis

4.6 x 106E. coliBacterium

8 x 105M. pneumoniaeMycoplasma

6.6 x 105Prenomas salinaAlgae

Genome (bp)Size

SpeciesPhylum

Genome size does not correlate completely to “complexity” of an organism

Heredity  and  diversity  

ChEn 3701 8/22/2006

Prof. W-S Hu Lecture Notes 5

Chemical Basis of Heredity: DNA Replication

(Template strads)

How are living systems diversified?

• Fidelity in reproducing genetic information• Flexibility and adaptability for evolution

– Flexibility in two ways• Combinatorial assortment of genetic materials

– When passing genetic information to offspring, different individual offspring receive different combination of genetic materials

• Variation in genetic materials– Allow for changes in the genetic materials, or the

modification of the genetic information

Modes of Genetic Alteration

– Intragenic mutation• create new genes

– Gene Duplication• Make more copies, closely related genes

– Segment shuffling• A segment of a gene is broken and rejoined to

give hybrid gene– Horizontal Transfer

• Entire segment of gene moves from one cell to another (may not be the same species)

A segment of chromosome can also be shuffled

ChEn 3701 8/22/2006

Prof. W-S Hu Lecture Notes 5

Chemical Basis of Heredity: DNA Replication

(Template strads)

How are living systems diversified?

• Fidelity in reproducing genetic information• Flexibility and adaptability for evolution

– Flexibility in two ways• Combinatorial assortment of genetic materials

– When passing genetic information to offspring, different individual offspring receive different combination of genetic materials

• Variation in genetic materials– Allow for changes in the genetic materials, or the

modification of the genetic information

Modes of Genetic Alteration

– Intragenic mutation• create new genes

– Gene Duplication• Make more copies, closely related genes

– Segment shuffling• A segment of a gene is broken and rejoined to

give hybrid gene– Horizontal Transfer

• Entire segment of gene moves from one cell to another (may not be the same species)

A segment of chromosome can also be shuffled

 Molecular  &  cellular  biology  basics  

•  TranscripGon  (DNA  à  mRNA)  •  TranslaGon  (mRNA  à  protein)  •  Proteins,  post-­‐translaGonal  modificaGon  &  sorGng  •  Cell  growth  &  death