12.Fatigue Shigley

download 12.Fatigue Shigley

of 18

Transcript of 12.Fatigue Shigley

  • 8/18/2019 12.Fatigue Shigley

    1/18

    !"#$%&' )#*'+%#,-./01 ./23./41 ./556

    MAE 316 – Strength of Mechanical Components

    NC State University Department of Mechanical and Aerospace Engineering

    !"#$%&' )#*'+%#,5

  • 8/18/2019 12.Fatigue Shigley

    2/18

    !"#$%&' )#*'+%#, -./46

    !"#$%&' )#*'+%#,7

    !

    Up to now, we have designed structures for static loads.

    88   9:

    #

     yS !max"  

    8

    #

    -! max $; "=+;#"+#6

  • 8/18/2019 12.Fatigue Shigley

    3/18

    !"#$%&' )#*'+%#, -./46

    !"#$%&' )#*'+%#,?

    !

    What if loading is not constant?

    ! Even if ! max  ! Sy, failure could occur if enough cycles are

    applied.

    8

    #

  • 8/18/2019 12.Fatigue Shigley

    4/18

    )3@ A$"%*"B -./06

    !"#$%&' )#*'+%#,0

    !"  -C"#$%&' ;#*'+%#,6 3 ;#*';; =**';E=+:$+% +&BF'*

    =C >G>

  • 8/18/2019 12.Fatigue Shigley

    5/18

    !#&"#$+% )#*';;'; -./556

    ! If ! min = - ! max, this is known as “fully-reversed” loading.

    !"#$%&' )#*'+%#,I

    J

    #

    JB"K

    JB$+

    max

    min

    minmax

    minmax

    )(2

    1

    )(2

    1

    !  

    !  

    !  !  !  !  

    !  !  !  !  

    =

    "==

    +==

     R

     g alternatina

    meanm

  • 8/18/2019 12.Fatigue Shigley

    6/18

    L+:&*"+>' M$B$# -./26!

    The simplest design rule to prevent fatigue failure is

    ! This is a valid concept, but not quite so simple in reality.

    ! Se is determined experimentally.! Simple approximate Se formulas exist for steel, but must be

    used carefully – better to have actual data.

    ! where Sut = ultimate strength and Se’ = unmodified, laboratory

    determined value

    !"#$%&' )#*'+%#,.

    eapplied    S  200 kpsi

    ' 700 MPa > 1400 MPa

    e ut ut  

    e ut 

    e ut 

    S S S 

    S S 

    S S 

    =   !

    =

    =

  • 8/18/2019 12.Fatigue Shigley

    7/18

    L+:&*"+>' M$B$# -./26!

    For real design we will modify Se’ to account for the surfacefinish, stress concentration, temperature, etc.

    ! These effects decrease the effective endurance limit.

    !"#$%&' )#*'+%#,2

  • 8/18/2019 12.Fatigue Shigley

    8/18

    !

    High-cycle fatigue life (N > 1000 cycles)! Typical S-N diagram for steel (see Fig 6-18 for f )

    8*':$>#$+% !"#$%&' M$C' -./46

    !"#$%&' )#*'+%#,4

     or !"# !"# !"#b

     f f  S aN S a b N  = = +

    3

    6

    10

    10

    !"# !"# !"#

    !"# !"# !"#

    ut 

    e

     fS a b

    S a b

    = +

    = +

    2

    1

    3!"#

    $ %

    ut 

    e

    ut 

    e

     fS b

     fS 

    a S 

    !   = -

    !   =

    (log Sf )

    (log N)

    Se

    fSu

    3 6

    1

    for 10 10 cycles

    or 

    !

    b

     f  

    b f  

    S aN N  

     N (S a)

    \ = £ £

    =

  • 8/18/2019 12.Fatigue Shigley

    9/18

    LK"BE

  • 8/18/2019 12.Fatigue Shigley

    10/18

    O$%, PG>

  • 8/18/2019 12.Fatigue Shigley

    11/18

    R=:$C$': L+:&*"+>' M$B$# -./N6!

    Modified endurance limit is defined as

    ! k a = surface finish factor = aS ut b

    O$%, PG>#=*; H"

  • 8/18/2019 12.Fatigue Shigley

    12/18

    R=:$C$': L+:&*"+>' M$B$# -./N6! k 

    b = size factor! Axial loading

    ! k b = 1

    ! Bending and torsion

    !

    k b = 0.879d -.107

    (0.11 in"  d "  2 in)! k b = 0.91d 

    -.157 (2 < d < 10 in)

    ! k b = 1.241d -.107 (2.79"  d "  51 mm)

    ! k b = 1.51d -.157 (51 < d < 254 mm)

    !   d  is the diameter of the round bar or the equivalent diameter

    (de) of a non-rotating or non-circular bar (Table 6-3).

    O$%, PG>

  • 8/18/2019 12.Fatigue Shigley

    13/18

    R=:$C$': L+:&*"+>' M$B$# -./N6! k 

    c= loading factor

    ! 1 (bending)

    ! 0.85 (axial)

    ! 0.59 (torsion)

    ! k d = temperature factor

    ! If endurance limit (Se’) is known, or use

    equation

    ! If Se’ is not known, use k d  = 1 and temperature-corrected tensile

    strength (Sut) (see Example 6-5 in textbook)

    O$%, PG>

  • 8/18/2019 12.Fatigue Shigley

    14/18

    R=:$C$': L+:&*"+>' M$B$# -./N6! k 

    e= reliability factor

    O$%, PG>

  • 8/18/2019 12.Fatigue Shigley

    15/18

    R=:$C$': L+:&*"+>' M$B$# -./N6! k 

     f= miscellaneous-effects factor

    ! Corrosion

    ! Electrolytic plating

    ! Metal Spraying

    ! Cyclic frequency

    ! Frettage corrosion

    ! If none of the above conditions apply, k  f = 1

    O$%, PG>

  • 8/18/2019 12.Fatigue Shigley

    16/18

    !"#$%&' )#*';; P=+>'+#*"#$=+ !">#=* -./5Q6

    !  K  f 

    = fatigue stress concentration factor

    !  K  f  = 1 + q(K t  – 1)

    ! q = notch sensitivity

    !  K t = stress concentration factor

    !  K  f can be used to reduce Se’  (multiply Se

    ’ by 1/K  f ) or to modify the

    nominal stress (! max = K  f ! nom).

    O$%, PG>

  • 8/18/2019 12.Fatigue Shigley

    17/18

    !"#$%&' )#*';; P=+>'+#*"#$=+ !">#=* -./5Q6

    O$%, PG>, ;'+;$#$D$#G C=* F'+:$+% "+: "K$"<

    -./01# )*+3 @=#>, ;'+;$#$D$#G C=* #=*;$=+

  • 8/18/2019 12.Fatigue Shigley

    18/18

    LK"BE