12-01 Slope monitoring...

15
Grasberg, 2003 Slope Monitoring Types of slope instruments Displacement monitoring devices Precise surveys Differential global positioning systems (DGPS) Space-borne and terrestrial SAR Interferometry Strain monitoring devices Surface extensometers Borehole extensometers Borehole inclinometers Tiltmeters Time domain reflectometry (TDR) Pore-pressure measurements Piezometers and monitoring wells Tensiometers TDR moisture gauges Microseismicity Geophones

Transcript of 12-01 Slope monitoring...

Page 1: 12-01 Slope monitoring methodsstep.ipgp.jussieu.fr/images/3/37/12-01_Slope_monitoring_methods.pdf · Chuquicamata Mine, Chile, 1968 Movement vector F-2 Micro-seismic events/day. 12

1

Grasberg, 2003

Slope Monitoring

Types of slope instruments

Displacement monitoring devicesPrecise surveysDifferential global positioning systems (DGPS)Space-borne and terrestrial SAR Interferometry

Strain monitoring devicesSurface extensometersBorehole extensometersBorehole inclinometersTiltmetersTime domain reflectometry (TDR)

Pore-pressure measurementsPiezometers and monitoring wellsTensiometersTDR moisture gauges

MicroseismicityGeophones

Page 2: 12-01 Slope monitoring methodsstep.ipgp.jussieu.fr/images/3/37/12-01_Slope_monitoring_methods.pdf · Chuquicamata Mine, Chile, 1968 Movement vector F-2 Micro-seismic events/day. 12

2

Displacement monitoring1) “Total Station”: Electronic Distance Measurement

(“EDM”) + Theodolite

2) “DGPS” Differential Global Positioning System:Base station+measuring stations Target prism

Britannia Mine, B.C. Disturbed Area

PR #104

PR #102

PR #100

Page 3: 12-01 Slope monitoring methodsstep.ipgp.jussieu.fr/images/3/37/12-01_Slope_monitoring_methods.pdf · Chuquicamata Mine, Chile, 1968 Movement vector F-2 Micro-seismic events/day. 12

3

PR #100

PR #104

PR #102

“East Block”

East Block, failure model

0 50 100 150 200 250 300 350 400

1000

1050

1100

1150

1200

1250

1300

1350

1400

ELE

VA

TIO

N (m

)

Toppling(schematic)

Tensioncracks

102

100

300,000 m3

0 50 100 150 200 250 300 350 400

1000

1050

1100

1150

1200

1250

1300

1350

1400

ELE

VA

TIO

N (m

)

Toppling(schematic)

Tensioncracks

102

100

Page 4: 12-01 Slope monitoring methodsstep.ipgp.jussieu.fr/images/3/37/12-01_Slope_monitoring_methods.pdf · Chuquicamata Mine, Chile, 1968 Movement vector F-2 Micro-seismic events/day. 12

4

MonitoringJane Basin Slope

26-Jul-02 30-Aug-04

04-Jan-9506-Jan-92

05-Aug-93

25-Nov-92

20-Jul-92

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Jan-92 Jan-93 Jan-94 Jan-95 Jan-96 Jan-97 Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05 Jan-06

Date

Del

ta T

otal

Mov

emen

t (m

)PR100

PR101

PR102

PR103

PR104

Coal Mine Waste Dumps

Page 5: 12-01 Slope monitoring methodsstep.ipgp.jussieu.fr/images/3/37/12-01_Slope_monitoring_methods.pdf · Chuquicamata Mine, Chile, 1968 Movement vector F-2 Micro-seismic events/day. 12

5

Wire extensometer

With data logger

Borehole extensometer (Slope Indicator, Ltd.)

Page 6: 12-01 Slope monitoring methodsstep.ipgp.jussieu.fr/images/3/37/12-01_Slope_monitoring_methods.pdf · Chuquicamata Mine, Chile, 1968 Movement vector F-2 Micro-seismic events/day. 12

6

Surface rod extensometer (“crackmeter”)

Vibrating wire displacement gauge (or a vernier for manual readings or a linear transducer) accuracy <1mm

Tape extensometer

Rod Extensometers

ISMES, Valtellina, Italy

ETH, Switzerland

Page 7: 12-01 Slope monitoring methodsstep.ipgp.jussieu.fr/images/3/37/12-01_Slope_monitoring_methods.pdf · Chuquicamata Mine, Chile, 1968 Movement vector F-2 Micro-seismic events/day. 12

7

Borehole inclinometer (“Slope Indicator”)

Some inclinometer applications (Slope Indicator, Ltd.)

Page 8: 12-01 Slope monitoring methodsstep.ipgp.jussieu.fr/images/3/37/12-01_Slope_monitoring_methods.pdf · Chuquicamata Mine, Chile, 1968 Movement vector F-2 Micro-seismic events/day. 12

8

Time domain reflectometry (TDR)

Synthetic aperture radar interferometry (SAR)

Page 9: 12-01 Slope monitoring methodsstep.ipgp.jussieu.fr/images/3/37/12-01_Slope_monitoring_methods.pdf · Chuquicamata Mine, Chile, 1968 Movement vector F-2 Micro-seismic events/day. 12

9

Piezometers

▼ 1) Observation well (open) –not a piezometer

2) Pneumatic piezometer

3) Standipe(Casagrande) piezometer

4) Electric piezometer(Vibrating Wire)

SEAL

SAND PACK

MEMBRANE

AIR

Piezometercomparison

Page 10: 12-01 Slope monitoring methodsstep.ipgp.jussieu.fr/images/3/37/12-01_Slope_monitoring_methods.pdf · Chuquicamata Mine, Chile, 1968 Movement vector F-2 Micro-seismic events/day. 12

10

Slope Indicator multi-point vibrating wire

piezometer

Grasberg, 2003

Monitoring Interpretation

Page 11: 12-01 Slope monitoring methodsstep.ipgp.jussieu.fr/images/3/37/12-01_Slope_monitoring_methods.pdf · Chuquicamata Mine, Chile, 1968 Movement vector F-2 Micro-seismic events/day. 12

11

Chuquicamata Mine, Chile, 1968

Movement vector F-2

Micro-seismic events/day

Chuquicamata Mine, Chile, 1968

Movement vector F-2

Micro-seismic events/day

Page 12: 12-01 Slope monitoring methodsstep.ipgp.jussieu.fr/images/3/37/12-01_Slope_monitoring_methods.pdf · Chuquicamata Mine, Chile, 1968 Movement vector F-2 Micro-seismic events/day. 12

12

Inverse Velocity Method (Fukuzono, 1985)Normal

Inverse

Inverse Velocity Method, more examples

“La Clapiere”France

PredictionReal

Tripp Mine: slow failure

Page 13: 12-01 Slope monitoring methodsstep.ipgp.jussieu.fr/images/3/37/12-01_Slope_monitoring_methods.pdf · Chuquicamata Mine, Chile, 1968 Movement vector F-2 Micro-seismic events/day. 12

13

Inverse Velocity Method, another example

18-Jul-01 25-Jul-01 1-Aug-01 8-Aug-01 15-Aug-01 22-Aug-01 29-Aug-01DATE

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

INV

ER

SE

VE

LOC

ITY

(day

s/cm

)

45 40 35 30 25 20 15 10 5 0TIME BEFORE FAILURE (DAYS)

0

5

10

15

20

25

30

35

VE

LOC

ITY

(cm

/day

)45 40 35 30 25 20 15 10 5 0

TIME BEFORE FAILURE (DAYS)

Regression coeffiecient (R2) = 99%for all inverse-velocity fits

Predicted velocity curves (basedon inverse-velocity fits) comparedwith actual velocity data

18 million m3 pit slope failure prediction (Rose and Hungr, 2006)

Page 14: 12-01 Slope monitoring methodsstep.ipgp.jussieu.fr/images/3/37/12-01_Slope_monitoring_methods.pdf · Chuquicamata Mine, Chile, 1968 Movement vector F-2 Micro-seismic events/day. 12

14

Use of inverse velocity to monitor stabilization progress (Rose and Hungr, 2006)

1-May-02 16-May-02 31-May-02 15-Jun-02 30-Jun-02 16-Jul-02 31-Jul-02 15-Aug-02DATE

0

0.5

1

1.5

2

INV

ER

SE

VE

LOC

ITY

(day

s/cm

)

105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0TIME BEFORE FAILURE (DAYS)

Buttress and OffloadRemedial Measures

Stabilization of Slope Displacements

Regression Coeffiecient (R2) = 96 to 99%for all Inverse-Velocity Fits.

Pats FaultMidnight Fault

Carlin waxy silt unit

100mScale

Two faults and a pre-sheared silt layer, 3 million m3

Total Displacement?

ValPola rock avalanche, 1986

100 m pre-historic movement

New crack

Page 15: 12-01 Slope monitoring methodsstep.ipgp.jussieu.fr/images/3/37/12-01_Slope_monitoring_methods.pdf · Chuquicamata Mine, Chile, 1968 Movement vector F-2 Micro-seismic events/day. 12

15

Small rock slides

Libby Dam, Montana, 1971

Prediction not feasible

Purpose of monitoring

1) Movement detection, failure prediction

2) Vector solutions, interpretation of failure mechanism

(Cruden, 1986)

Predicted rupture surface