1-OPERASI-MULTISTAGE1

download 1-OPERASI-MULTISTAGE1

of 42

Transcript of 1-OPERASI-MULTISTAGE1

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    1/42

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    2/42

    IDEAL STAGEFeed

    F, xF

    Distillate

    D, xD

    Bottom Product

    B, xB

    SINGLE-STAGE (FLASH) DISTILLATION

    UNECONOMICAL

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    3/42

    3

    2

    4

    1

    5

    F, xF

    V1

    V2

    V3

    V5

    V4

    V6L5

    L4

    L3

    L2

    L1

    L0

    Countercurrent multistage contact

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    4/42

    Simple counter-current flow cannot give as

    complete a separation as required

    N = More concentrated L0

    uneconomical x0is fixed by other

    consideration

    Where does L0

    come from?

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    5/42

    Multistage cascade

    with reflux at bothends for distillation

    V1

    -qC

    m

    p

    LC

    D

    F

    Enriching

    section

    Strippingsection

    F-1

    F+1

    N

    1

    B

    C

    S qS

    L0

    Condenser

    Reboiler

    NL

    1NV

    SL

    F

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    6/42

    ZERO REFLUX

    No liquid returned to stage 1

    No condensation of V2to

    supply liquid leaving stage 1

    The vapor leaving stage 1

    would be the same quantity andcomposition of the vapor

    leaving stage 2.

    The vapor leaving stage 2

    would be the same quantity and

    composition of the vaporleaving stage 3.

    Etc.

    V1

    -qCLC

    D

    F F

    1

    C

    2

    V2

    V3

    3

    Multistage cascade with no

    liquid reflux

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    7/42

    F

    N-2

    N-1

    N

    F

    B

    SqS

    NL

    1NV 0L

    S

    1NL

    2NL

    If the vapor reflux were eliminated:

    No vapor returned to stage N

    No vaporization of to

    supply vapor leaving stage N

    The liquid leaving stage N

    would be the same quantity andcomposition of the liquid

    leaving stage N-1.

    The liquid leaving stage N-1

    would be the same quantity and

    composition of the liquidleaving stage N-2.

    Etc.

    1NL

    Multistage cascade with no

    vapor reflux

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    8/42

    A fractionating column by its inherent nature has two limits of

    operation based upon reflux ratio:

    Minimum reflux

    Total reflux

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    9/42

    MINIMUM REFLUX

    D

    B

    F

    L0 There is insufficient liquid returned

    to the column

    There is only an infinitesimal

    change in vapor and liquid

    compositions through the plates.

    Infinite number of plates would be

    needed.

    Actual operation of a column

    below or at minimum reflux isimpossible.

    Schematic representation of

    minimum reflux operation

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    10/42

    TOTAL REFLUX

    All condensate is returned to

    the column

    It requires the least number of

    stages.

    Practically no overhead

    product and no bottomproduct can be made and no

    feed is introduced.

    It is possible to operate

    experimentally a fractionating

    column at total reflux when thesystem inventory is large and

    only very small samples of

    distillate and bottoms are

    removed.

    D = 0

    B = 0

    F = 0

    Schematic representation of total

    reflux operation

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    11/42

    MINIMUM REFLUX VS TOTAL REFLUX

    Large reflux ratio

    Small reflux ratio

    More coolant

    More heating medium

    Greater operating cost

    Greater number of

    plates

    Greater investment

    cost

    $/unitpro

    duct

    Number of stages

    Nmin

    Total cost

    Operating cost

    Equipment cost

    Optimum design

    at minimum cost

    Schematic relationship between reflux

    ratio and number of stages

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    12/42

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    13/42

    Over-all:

    Component i:

    (1)

    (2)

    (3)

    (4)

    (5)

    V1= L0+ D

    D01 ii0i1 xDxLyV

    D01 iii xxy

    11

    0

    V

    D

    1V

    L

    1

    D

    V

    D

    L 10

    MATERIAL BALANCE AROUND TOTAL CONDENSER

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    14/42

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    15/42

    D0D100D0D111 hLhVhLQLQVHV

    DD0

    DD1

    1

    0

    Qhh

    QhH

    V

    L

    01

    1DD0

    hH

    HQh

    D

    L

    (10)

    (11)

    V1H1+ (V1L0) QD= L0h0+ (V1L0) hD

    DD11DD00 QhHVQhhL

    Introducing eq. (1) into eq. (8) to eliminate V1yields:

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    16/42

    MATERIAL BALANCE IN ENRICHING SECTION

    V1, y1, H1

    L1, x1, h1 L0

    x0h0

    D

    xDhD

    qD

    Vm+1

    ym+1

    Hm+1

    Lmxm

    hm

    F

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    17/42

    Over-all:

    Component i:

    (12)

    (13)

    (14)

    Vm+1= Lm+ D

    Dm1m iimi1m xDxLyV

    Dm1m im1mimi1m xLVxLyV

    Dm

    D1m

    ii

    ii

    1m

    m

    xx

    xy

    V

    L

    Introducing eq. (12) into eq. (13) to eliminate Dresults in

    D1mDm ii1miim xyVxxL

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    18/42

    (15)m1m

    1mD

    ii

    iim

    xy

    yx

    D

    L

    Introducing eq. (12) into eq. (13) to eliminate Vm+1

    results in:

    Dm1m iimim xDxLyDL

    1mDm1m iiiim yxDxyL

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    19/42

    ENTHALPY BALANCE IN ENRICHING SECTION

    (16)DmmD1m1m hDhLQDHV

    Dm1mmmDm1m1m1m hLVhLQLVHV

    Introducing eq. (12) into eq. (16) to eliminate Dresults in

    DmD1mmmDmD1m1m1m hLhVhLQLQVHV

    DD1m1mDDmm QhHVQhhL

    DDm

    DD1m

    1m

    m

    Qhh

    QhH

    V

    L

    (17)

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    20/42

    m1m

    D1mDm

    hH

    QHh

    D

    L

    (18)

    Introducing eq. (12) into eq. (16) to eliminate Vm+1

    results in:

    DmmD1mm hDhLQDHDL

    DmmD1m1mm DhhLDQDHHL

    D1mDm1mm QHhDhHL

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    21/42

    Partial condenser

    MATERIAL AND ENTHALPY BALANCES

    AROUND PARTIAL CONDENSER

    V1, y1, H1

    L1, x1, h1

    L0

    x0

    h0

    D

    yD

    HDqD

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    22/42

    Over-all:

    Component i:

    (19)

    (20)

    (21)

    V1= L0+ D

    D01 ii0i1 yDxLyV

    0

    D

    D01

    i

    i

    Diiix

    yK;xxy

    D01 i01i0i1

    yLVxLyV

    (22)D0

    D01

    D0

    D1

    ii

    iii

    ii

    ii

    1

    0

    K1x

    Kxy

    yx

    yy

    V

    L

    D1D0 ii1ii0 yyVyxL

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    23/42

    (23)

    D01 ii0i0 yDxLyDL

    01

    1D0

    01

    1D

    ii

    iii

    ii

    ii0

    xy

    yKx

    xy

    yy

    D

    L

    1D01 iiii0

    yyDxyL

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    24/42

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    25/42

    V1H1+ (V1L0) QD= L0h0+ (V1L0) HD

    DD11DD00 QHHVQHhL

    DD0

    DD1

    1

    0

    QHh

    QHH

    V

    L

    (27)

    Replacing D in equation (26) with (V1L0):

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    26/42

    01

    1DD0

    hH

    HQH

    D

    L

    (28)

    (L0+ D) H1+ D QD= L0h0+ D HD

    1DD010 HQHDhHL

    Replacing V1in equation (26) by (L0+ D):

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    27/42

    MATERIAL BALANCE IN ENRICHING SECTION

    WITH PARTIAL CONDENSER

    V1, y1, H1

    L1, x1, h1

    L0

    x0h0

    D

    yD

    hD

    qD

    Vm+1

    ym+1

    Hm+1

    Lm

    xm

    hm

    F

    m

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    28/42

    Over-all:

    Component i:

    (29)

    (30)

    (31)

    Vm+1= Lm+ D

    Dm1m iimi1m

    yDxLyV

    Dm1m im1mimi1m yLVxLyV

    Dm

    D1m

    ii

    ii

    1m

    m

    yx

    yy

    V

    L

    D is eliminated from equation (30) by substituting D with

    (Vm+1Lm):

    D1mDm ii1miim yyVyxL

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    29/42

    (32)m1m

    1mD

    ii

    iim

    xy

    yy

    D

    L

    Dm1m iimim yDxLyDL

    Vm+1is eliminated from equation (30) by substituting

    Vm+1with Lm+ D

    1mDm1m iiiim yyDxyL

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    30/42

    ENTHALPY BALANCE IN ENRICHING SECTION

    V1, y1, H1

    L1, x1, h1L0

    x0

    h0

    D

    xD

    hD

    qD

    Vm+1

    ym+1

    Hm+1

    Lm

    xmhm

    F

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    31/42

    (33)

    (34)

    DmmD1m1m HDhLQDHV

    Dm1mmmDm1m1m1m HLVhLQLVHV

    D is eliminated from equation (33) by substituting D with

    Vm+1Lm

    DDm

    DD1m

    1m

    m

    QHh

    QHH

    V

    L

    DD1m1mDDmm QHHVQHhL

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    32/42

    Vm+1is eliminated from equation (33) by substituting

    Vm+1with Lm+ D

    DmmD1mm HDhLQDHDL

    m1m

    D1mDm

    hH

    QHH

    D

    L

    D1mDm1mm QHHDhHL

    (35)

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    33/42

    MATERIAL BALANCE IN STRIPPING SECTION

    qBB

    xB

    hB

    yp+1Hp+1xphp

    F

    1pV pL

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    34/42

    Over-all: BVL 1pp

    Component i: B1pp ii1pip xByVxL

    B1pp i1ppi1pip xVLyVxL

    Bp

    B1p

    ii

    ii

    1p

    p

    xx

    xy

    V

    L

    (36)

    (37)

    (38)

    Replacing B in equation (37) with 1pp VL

    B1pBp ii1piip xyVxxL

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    35/42

    ENTHALPY BALANCE:

    B1p1pBpp

    hBHVqhL qB= B QB

    B1p1pBpp hBHVQBhL

    B1pp1p1pB1pppp hVLHVQVLhL

    BB1p1pBBpp QhHVhQhL

    BBp

    BB1p

    1p

    p

    hQh

    QhH

    V

    L

    (39)(40)

    (41)

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    36/42

    MATERIAL & ENTHALPY BALANCES ABOUT REBOILER

    qB

    BxB

    hB

    yN+1

    HN+1

    yN

    HN

    1NV NL

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    37/42

    Over-all: BVL 1NN

    Component i: B1NN ii1NiN xByVxL

    B1NN i1NNi1NiN xVLyVxL

    BN

    B1N

    ii

    ii

    1N

    N

    xx

    xy

    V

    L

    (42)

    (43)

    (44)

    Replacing B in equation (43) with1NN VL

    B1pBp ii1piip xyVxxL

    MATERIAL BALANCE AROUND THE FEED PLATE

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    38/42

    MATERIAL BALANCE AROUND THE FEED PLATE

    F = FV+ FL

    LV FFF HHh

    LV FFF xyx

    1pV Hp+1

    yp+1

    pL

    hp

    xp

    Vm+1

    Hm+1ym+1

    Lm

    hmxm

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    39/42

    Over-all:

    1mpm1pLV VLLVFF

    Component i:

    1mpm1pLV i1mipimi1pF,iLF,iV yVxLxLyVxFyF

    1m1pV VVF

    pmL LLF

    (45)

    (48)

    (46)

    (47)

    1mp

    m1pLV

    i1mimL

    imiV1mF,iLF,iV

    yVxLF

    xLyFVxFyF

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    40/42

    (49)

    V1pLp1p1mpm F,iiVF,iiLii1miim yyFxxFyyVxxL

    pm

    V1p

    pm

    Lp

    pm

    1p1m

    ii1m

    F,iiV

    ii1m

    F,iiL

    ii

    ii

    1m

    m

    xxV

    yyF

    xxV

    xxF

    xx

    yy

    V

    L

    If the feed is a saturated liquid, the last term in eq. (49)

    drops out.

    If the feed is a saturated vapor, the middle term on the

    right side of eq. (49) drops out.

    ENTHALPY BALANCE AROUND THE FEED PLATE

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    41/42

    ENTHALPY BALANCE AROUND THE FEED PLATE

    pp1m1mmm1p1pFLFV hLHVhLHVhFHF LV

    pmL1m1mmm1pV1mFLFV hLFHVhLHFVhFHF LV

    VL F1pVFpL1p1m1mpmm HHFhhFHHVhhL

    pm

    F1p

    1m

    V

    pm

    Fp

    1m

    L

    pm

    1p1m

    1m

    m

    hh

    HH

    V

    F

    hh

    hh

    V

    F

    hh

    HH

    V

    LVL

    (50)

    (51)

    If the feed is a saturated liquid, the last term in eq.

    (51) drops out.

    If the feed is a saturated vapor, the middle term on

    the right side of eq. (51) drops out.

  • 8/12/2019 1-OPERASI-MULTISTAGE1

    42/42

    In liquid mixture / solution the molal enthalpy of the

    mixture at a given T and P is the sum of the partial molal

    enthalpies of the components composing the mixture.

    ni

    im hh (52)

    In regular / ideal mixtures:

    oiii hxh (53)

    For gaseous / vapor mixtures at normal T and P:

    ni

    ii

    n

    iim yhH (54)