1 Gravitational wave interferometer OPTICS François BONDU CNRS UMR 6162 ARTEMIS, Observatoire de la...

40
1 Gravitational wave interferometer OPTICS François BONDU CNRS UMR 6162 ARTEMIS, Observatoire de la Côte d’Azur, Nice, France EGO, Cascina, Italy May 2006 Fabry-Perot cavity in practice Rules for optical design Optical performances

Transcript of 1 Gravitational wave interferometer OPTICS François BONDU CNRS UMR 6162 ARTEMIS, Observatoire de la...

1

Gravitational wave interferometer OPTICS

François BONDU

CNRS UMR 6162 ARTEMIS,Observatoire de la Côte d’Azur, Nice, France

EGO, Cascina, Italy

May 2006

Fabry-Perot cavity in practice

Rules for optical design

Optical performances

2

Contents

I. Fabry-Perot cavity in practiceScalar parameters – cavity reflectivity, mirror transmissions, lossesMatching: impedance, frequency/length tuning, wavefrontLength / Frequency measurement: cavity transfer function

II. Rules for gravitational wave interferometer optical designOptimum values for mirror transmissions“dark fringe”: contrast defect“Mode Cleaner”

III. Optical performancesActual performances:Mirror metrologyOptical simulationAccurate in-situ metrology

3

Michelson configuration at dark fringe + servo loop to cancel laser frequency noise

VIRGO optical design

Slave laser

Masterlaser

Hz/10.3~2 23L

Lh

Fabry-Perot cavity to detect gravitational wave

Suspended mirrors to cancel seismic noise

L=3 km

Long arms to divide mirror and suspension thermal noiseRecycling mirror to reduce shot noiseInput <<Mode Cleaner>> to filter out input beam jitter and select mode

L=144m

Output Mode Cleaner to filter output mode

4

SCALAR MODEL:“plane waves”scalar transmissions, scalar losses of mirrors

1. Fabry-Perot cavity: A. parameters

REFLECTION TRANSMISSION

Can we understand these shapes?

5

Round Trip LossesFree Spectral RangeRecycling gainCavity PoleFinesseCavity reflectivity

SCALAR MODEL:“plane waves”scalar transmissions, scalar losses of mirrors

Mirror 1 Mirror 2

Ein EstoEtrans

Eref

Ert = r1 P-1 r2 P Esto

1. Fabry-Perot cavity: A. parameters

6

SCALAR MODEL:“plane waves”scalar transmissions, scalar losses of mirrors

Ert = r1 P-1 r2 P Esto

2with

)1(

211

2121

11111

LLTTL

LPP

LTLTr

RT

RTstort

Round trip “losses”

1. Fabry-Perot cavity: A. parameters

Round Trip LossesFree Spectral RangeRecycling gainCavity PoleFinesseCavity reflectivity

7

1. Fabry-Perot cavity: A. parameters

c

LE

err

tE

EEtE

cLiP

inisto

RTinsto

4with

1

:solution statesteady

)/2exp(delaynpropagatio

21

1

1

2LL

SCALAR MODEL:“plane waves”scalar transmissions, scalar losses of mirrors

Ert = r1 P-1 r2 P Esto

Free spectral rangePeriod:

L

cFSRFSR

2,

Round Trip LossesFree Spectral RangeRecycling gainCavity PoleFinesseCavity reflectivity

8

1. Fabry-Perot cavity: A. parameters

2

21

1

21

1

1]2[0

1

rr

tPP

Eerr

tE

insto

inisto

SCALAR MODEL:“plane waves”scalar transmissions, scalar losses of mirrors

Recycling gain

2

11

1

1

rr

tG

RESONANCE CONDITION

Round Trip LossesFree Spectral RangeRecycling gainCavity PoleFinesseCavity reflectivity

9

24

that so),( 00000 k

c

LL

1

)(4 000

c

Lf

SCALAR MODEL:“plane waves”scalar transmissions, scalar losses of mirrors

RESONANCE CONDITION

Suppose now

21

21

2

1Maximum HalfLinewidth Half

/1

rr

rrFSRfwith

fif

GEE

P

Pinsto

Cavity pole

1. Fabry-Perot cavity: A. parameters

Round Trip LossesFree Spectral RangeRecycling gainCavity PoleFinesseCavity reflectivity

10

SCALAR MODEL:“plane waves”scalar transmissions, scalar losses of mirrors

Pf

FSRFinesse

2 Finesse

1. Fabry-Perot cavity: A. parameters

Round Trip LossesFree Spectral RangeRecycling gainCavity PoleFinesseCavity reflectivity

11

SCALAR MODEL:“plane waves”scalar transmissions, scalar losses of mirrors

on resonance reflectivity

)(21

)(121

1

)1()(

fi

fi

in

ref

err

eLrr

E

Efr

21

121

1

)1()0(

rr

Lrrr

2)0( R

1. Fabry-Perot cavity: A. parameters

Round Trip LossesFree Spectral RangeRecycling gainCavity PoleFinesseCavity reflectivity

12

2nd order

In T+P

1st order

in T+P

Finesse

On resonance reflection

transmission

1. Fabry-Perot cavity: A. parameters

pT2

)1(2

1 pTT

21

121

1)1(

rrprr

2

21

21

1

rrtt

21

21

1 rrrr

2214pTTT

13

SCALAR MODEL:“plane waves”scalar transmissions, scalar losses of mirrors

1. Fabry-Perot cavity: A. parameters

T1 = 12%T2 = 5%L = 0(finesse = 35)

REFLECTION TRANSMISSION

14

SCALAR MODEL:“plane waves”scalar transmissions, scalar losses of mirrors

01

)1()0(

21

121

rr

Lrrr

0

Impedance matchingFrequency/length tuning (“lock”)Wavefront matching

alignmentbeam size / positionsurface defects - stability

The Fabry-Perot interferometer

0

1. Fabry-Perot cavity: B. Matching

Optimal coupling

Over-coupling

Under-coupling

15

Impedance matchingFrequency/length tuning (“lock”)Wavefront matching

alignmentbeam size / positionsurface defects - stability

The Fabry-Perot interferometer

SCALAR MODEL:“plane waves”scalar transmissions, scalar losses of mirrors

Frequency/Length tuning

c

L000

4

1. Fabry-Perot cavity: B. Matching

16

Impedance matchingFrequency/length tuning (“lock”)Wavefront matching

alignmentbeam size / positionsurface defects - stability

The Fabry-Perot interferometer

NON-SCALAR MODEL:

1. Fabry-Perot cavity: B. Matching

Mirror 1 Mirror 2

Ein EstoEtrans

Eref

Ein(x,y) ; Esto(x,y) ;

r1, P, r2 are operators

z axis

Ert = r1 P-1 r2 P Esto

17

Impedance matchingFrequency/length tuning (“lock”)Wavefront matching

alignmentbeam size / positionsurface defects - stability

The Fabry-Perot interferometer

NON-SCALAR MODEL:

1. Fabry-Perot cavity: B. Matching

Esto(x,y) = k Ein(x,y) (k complex number)

EstoEin

Wavefront matching:

Superpose angles and lateral driftsof incoming and resonating beam

<<ALIGNMENT ACTIVITY>>

18

NON-SCALAR MODEL:

1. Fabry-Perot cavity: B. Matching

Esto(x,y) = k Ein(x,y) (k complex number)

Esto

Ein

Wavefront matching:

Superpose beam positions and beam widths <<MATCHING ACTIVITY>>

Impedance matchingFrequency/length tuning (“lock”)Wavefront matching

alignmentbeam size / positionsurface defects - stability

The Fabry-Perot interferometer

19

NON-SCALAR MODEL:

2211

2

2121

,,

,),(

C

Definition of beam coupling:

Round trip coupling losses:

Impedance matchingFrequency/length tuning (“lock”)Wavefront matching

alignmentbeam size / positionsurface defects - stability

The Fabry-Perot interferometer

Too small mirror diameters “clipping” imperfect surface: local defects, random figures

),(1 stortrt EECL

1. Fabry-Perot cavity: B. Matching

20

NON-SCALAR MODEL:

2111 LLTTLrt

Definition of stability:

Impedance matchingFrequency/length tuning (“lock”)Wavefront matching

alignmentbeam size / positionsurface defects - stability

The Fabry-Perot interferometer

Definition of stability in case of perfect surface figures:

1)1)(1(021

R

L

R

L

1. Fabry-Perot cavity: B. Matching

21

1. Fabry-Perot cavity: B. Matching

Impedance matchingFrequency/length tuning (“lock”)Wavefront matching

alignmentbeam size / positionsurface defects - stability

The Fabry-Perot interferometerCharles Fabry (1867-1945)Alfred Perot (1863-1925)Amédée Jobin (mirror manufacturer) (1861-1945)Gustave Yvon (>1911)Marseille – beginning of 20th century

“Les franges des lames minces argentées”,Annales de Chimie et de Physique, 7e série, t12, 12 décembre 1897

“A taste of Fabry and Perot’s Discoveries, Physica Scripta, T86,76-82, 2000

22

Impedance matchingFrequency/length tuning (“lock”)Wavefront matching

alignmentbeam size / positionsurface defects - stability

The Fabry-Perot interferometer

1. Fabry-Perot cavity: B. Matching

23

Phase modulated laser:

m phase modulation indexfm modulation frequency

SB- C SB+

mmC iii

in em

em

e f2f2f20 22

1

ti

mCti

mCCti

ref em

Rem

RRe mmC f2f2f20 2

)ff(2

)ff()f(

1. Fabry-Perot cavity: C. measurement

24

2

p

p00

ff1

ff

)1()f(Im

c

c

cP mPRmPs

mff

)ff()f()ff()f(Im2

**0 mccmccP RRRRm

Ps

error signal:

Does not provide information about frequency behavior once locked

1. Fabry-Perot cavity: C. measurement

25

Modulated laser + measurement line:

n phase modulation indexfn modulation frequency

p

0)noisefrequency(

ff1

)1(

i

mPTF

SB- C SB+

f << FSR, f ≠ fm

This pole

1. Fabry-Perot cavity: C. measurement

26

Contents

I. Fabry-Perot cavity in practiceScalar parameters – cavity reflectivity, mirror transmissions, lossesMatching: impedance, frequency/length tuning, wavefrontLength / Frequency measurement: cavity transfer function

II. Rules for gravitational wave interferometer optical designOptimum values for mirror transmissions“dark fringe”: contrast defect“Mode Cleaner”

III. Optical performancesActual performances:Mirror metrologyOptical simulationAccurate in-situ metrology

27

2. Optical design: A. mirror transmissions

cavityRTFP GLR 1

Fabry-Perot cavity with Rmax transmissions as end mirrors

Virgo mirrors: LRT ~500 ppm, Gcavity ~ 32 reflectivity defect 1.5%

Was estimated 1-5 % at design

Have as much as possible power on beamsplitter

Match “losses” of cavities with recycling mirror

Was estimated 8 % at design (5.5 % recent refit)

28

• Michelson simple :

BS

laser

Pin

Pout

minmax

minmax

PPPPC

Pmax, Pmin = Pout On black and white fringes

2. Optical design: B. dark fringe

29

Slave laser

Masterlaser

L=3 km

Input <<Mode Cleaner>> to filter out input beam jitter and select mode

L=144m

Output Mode Cleaner to filter output mode

2. Optical design: C. Mode Cleaners

30

Detection

Output Mode-CleanerOutput Mode Cleaneron Suspended Bench

Photodiodeson Detection Bench

Beam

31

Contents

I. Fabry-Perot cavity in practiceScalar parameters – cavity reflectivity, mirror transmissions, lossesMatching: impedance, frequency/length tuning, wavefrontLength / Frequency measurement: cavity transfer function

II. Rules for gravitational wave interferometer optical designOptimum values for mirror transmissions“dark fringe”: contrast defect“Mode Cleaner”

III. Optical performancesActual performances:Mirror metrologyOptical simulationAccurate in-situ metrology

32

Measured optical parameters

16.7 W 7.1 W

F = 49±0.5

F = 51 ±1

Gcarrier = 30-35 (exp. 50)GSB ~ 20 (exp. 36)

1 – C < 10-4

1 – C = 3.10-3 (mean)

Slave laser

Masterlaser

1 W T=10%

III. Optical performances

Losses in input Mode Cleaner?

Recycling gain?

Arm finesses?

33

Mirror metrology

reproducibility 0.4 nm; step 0.35 mm

resolution 30 ppb/cm // 20 ppb

resolution of a few ppm

transmission map

Before and/or after the coating process, maps are measured:

- Mirror surface map (modified profilometer)

- bulk and coating absorption map (“mirage” bench)

- scatter map (commercial instrument)

- transmission map (commercial instrument)

- local defects measurements

- birefringency The VIRGO large mirrors: a challenge for low loss coatings, CQG 2004, 21

Instruments: ESPCI, ParisCoating, 140 m2 room class 1: LMA, Lyon

Scatterometer CASI 400x400mm

Micromap 400x400 mm(local defects)

Absorption Photothermal Deflection System

Phase shift interferometer

34

DiamDiam 35 cm35 cmRms Rms 2.3 nm2.3 nmp-p p-p 11.5 nm11.5 nm

Surface maps

Ex: a large flat mirror

-Good quality silica

- Good polishing

- Control of coating deposition (DIBS) with no pollutants

- Surface correction

III. Optical performances

35

TWO optical programs:

- One that propagates wavefrontwith FFT

- One that decomposes beams on TEM HG(m,n) base

- Check out cavity visibility (total losses)

- Check out expected recycling gain,for varying radii of curvature

- Check out expected contrast defect

- Check out modulation frequency

- Improve interferometer parameters…

Optical simulation

III. Optical performances

36

Scalar defects Maps Maps+thermal

Opt mod index 0.068 0.172±0.001 0.215 ±0.001

Opt demod phase 0 2 ±0 17 ±1

Finesse N 49.26 49.1 ±0.2 49.3 ±0.2

Finesse W 49.79 49.6 ±0.2 49.7 ±0.2

dF/F [%] 0.27 0.23 ±0.12 0.24 ±0.12

Asymmetry [%] 1.05 1.00 ±0.3 2.78 ±0.5

Stored power N [kW] 15.38 10.82 ±0 11.15 ±0

Lost power N [W] 0.23 4.11 ±1 3.70 ±1

Surtension N 31.37 31.18 ±0.02 31.15 ±0.02

Stored power W [kW] 15.55 10.91 ±0 11.27 ±0.3

Lost power W [W] 0.19 6.05 ±0.02 5.85 ±0.04

Surtension W 31.70 31.42 ±0.01 31.48 ±0.1

Carrier power on BS [W] 978.5 684.5 ±0.5 725.1 ±2

Sideband power on BS [W] 1.70 8.56 ±0.1 10.9 ±0.2

Reflected carrier [W] 17.84 8.42 ±0.01 9.82 ±0.08

Reflected sb [W] 0.027 0.24 ±0 0.26 ±0.01

CITF surtension Carrier 49.04 34.74 ±0.03 37.10 ±0.08

CITF surtension SB 36.49 29.01 ±0.02 24.0 ±0.1

Transmitted (detected) carrier [mW] 0.064 (0.064) 359 ±6 (1.6 ±0) 324 ±40 (3.5 ±0.1)

Transmitted (detected) sb [mW] 18.7 (17.9) 93.0 ±0.8 (70.0 ±1) 125 ±2 (100 ±2)

Sensitivity [*1E-23] 2.48 2.87 ±0.01 2.96 ±0.02

Optical program: typical results (Modal simulation)

37

Example:

Virgo simulation with surface maps and with an incoming field of 20W

Contrast defect= 0.94%

North arm amplification = 31.65

West arm amplification = 32.06

Recycling gain = 34.56

III. Optical performances

38

Details at FFSR

Fabry-Perot cavity transfer function measurements

Fit values with 95% confidence interval:

fp = 479 +/- 3.3 Hz

fz = -177 +/- 2.2 Hz

FSR = 1044039 +/- 2.2 Hz

L = 143.573326 +/- 30 m

Error bars: from measurement errors,Not for constant biases.

(fit both real and imaginary parts simultaneously)

III. Optical performances

39

Input Mode Cleaner Losses

T=2427 ppmT=2457 ppm

T = 5.7 ppm

Roud-trip losses:

Computed from mirror maps: 115 ppmFrom measurements: 846 +/- 5 ppm

Mirror transmission measurements+ transfer function details measurements

=> Mode mismatching 17%=> Cavity transmissitivity for TEM00 83%

III. Optical performances

(september 2005)

40

Contents

I. Fabry-Perot cavity in practiceScalar parameters – cavity reflectivity, mirror transmissions, lossesMatching: impedance, frequency/length tuning, wavefrontLength / Frequency measurement: cavity transfer function

II. Rules for gravitational wave interferometer optical designOptimum values for mirror transmissions“dark fringe”: contrast defect“Mode Cleaner”

III. Optical performancesActual performances:Mirror metrologyOptical simulationAccurate in-situ metrology