1. Fluids 1

download 1. Fluids 1

of 35

Transcript of 1. Fluids 1

  • 7/24/2019 1. Fluids 1

    1/35

    Advanced Thermodynamics

    Thermodynamic Properties of Fluids

  • 7/24/2019 1. Fluids 1

    2/35

    Property relations for homogeneous phases

    First law for a closed system dWdQnUd +=)(

    a special reversible process

    revrev dWdQnUd +=)()(nVPddWrev = )(nSTddQrev=

    )()()( nVPdnSTdnUd =

    Only properties of system are involved:

    It can be applied to any process in a closed system (not necessarily

    reversible processes)

    The change occurs between e!uilibrium states

  • 7/24/2019 1. Fluids 1

    3/35

    PdVTdSdU =

    SandUTVP """"The primary thermodynamic properties:

    PVUH +The enthalpy:

    TSUA The #elmholt$ energy:

    TSHG The %ibbs energy:

    For one mol of homogeneous fluid of constant composition:

    )()()( nVPdnSTdnUd =

    VdPTdSdH +=

    SdTPdVdA =

    SdTVdPdG = &a'wells e!uations

    VS S

    P

    V

    T

    =

    PS S

    V

    P

    T

    =

    TV V

    S

    T

    P

    =

    TP P

    S

    T

    V

    =

  • 7/24/2019 1. Fluids 1

    4/35

    nthalpy" entropy and internal energy change calculationsf (P,T)

    dP

    P

    HdT

    T

    HdH

    TP

    +

    = dP

    P

    SdT

    T

    SdS

    TP

    +

    =

    VdPTdSdH +=P

    P

    CT

    H=

    VP

    ST

    P

    H

    TT

    +

    =

    dPVP

    STdTCdH

    T

    P

    +

    +=

    TP P

    S

    T

    V

    =

    dPT

    V

    TVdTCdHP

    P

    +=

    T

    C

    T

    S P

    P

    =

    dPT

    V

    T

    dT

    CdSP

    P

    =PP T

    ST

    T

    H

    =

    TP P

    S

    T

    V

    =

    PVUH +

    VP

    VP

    P

    U

    P

    H

    TTT

    +

    +

    =

    TTT P

    V

    PP

    V

    TP

    U

    =

  • 7/24/2019 1. Fluids 1

    5/35

    *etermine the enthalpy and entropy changes of li!uid water for a

    change of state from + bar and ,-./ to +000 bar and -0./ The data

    for water are given

    #+and 1+at + bar" ,-./#,and 1,at + bar" -0./ #2and 12at +000 bar" -0./

    dPT

    VTVdTCdH

    P

    P

    +=

    dPT

    V

    T

    dTCdS

    P

    P

    =

    ( ) )(+)( +,,+, PPVTTTCH P +=

    ( )VdPTdTCdH P += +

    V

    T

    V

    P

    =

    volume e'pansivity

    )(ln +,+

    , PPVT

    TCS P =

    ( )molJH 32400+0

    )++000)(,04+5()+-2,2)(+0-+2(+

    )+-,65+-2,2(2+07-

    8

    =

    +=

    ( )molJS 3+2-+0

    )++000)(,04+5(+0-+2

    +-,65

    +-2,2

    ln2+07-

    8

    =

    =

  • 7/24/2019 1. Fluids 1

    6/35

    Internal energy and entropy change calculationsf (V,T)

    dVVUdT

    TUdU

    TV

    +

    =

    dVVSdT

    TSdS

    TV

    +

    =

    V

    V

    CT

    U=

    dVPV

    STdTCdU

    T

    V

    +=

    VT T

    P

    V

    S

    =

    dVPT

    PTdTCdU

    V

    V

    +=

    T

    C

    T

    S V

    V

    =

    dV

    T

    P

    T

    dTCdS

    V

    V

    +=

    PV

    ST

    V

    U

    TT

    =

    VV T

    ST

    T

    U

    =

    VT T

    P

    V

    S

    =

  • 7/24/2019 1. Fluids 1

    7/35

    SdTVdPdG =

    %ibbs energy G = G (P,T)

    dTRT

    GdG

    RTRT

    Gd

    ,

    +

    Thermodynamic property of great potential utility

    SdTVdPdG =

    dTRTHdP

    RTV

    RTGd

    ,

    TSHG

    dTTRTGdP

    PRTG

    RTGd

    PT

    + =)3()3(

    TP

    RTG

    RT

    V

    =)3(

    PTRTGT

    RTH

    = )3(

    G/RT = g (P,T)

    The %ibbs energy serves as a generating function

    for the other thermodynamic properties

  • 7/24/2019 1. Fluids 1

    8/35

    9esidual properties

    The definition for the generic residual property:

    ;MandMgare the actual and ideal" #" 1" or %

    The residual %ibbs energy serves as a generatingfunction for the other residual properties:

    gR MMM

    dTRT

    HdP

    RT

    V

    RT

    Gd

    RRR

    ,=

  • 7/24/2019 1. Fluids 1

    9/35

    dTRT

    HdP

    RT

    V

    RT

    Gd

    RRR

    ,=

    const TdP

    RT

    V

    RT

    Gd

    RR

    =

    = P

    RR

    dPRT

    V

    RT

    G

    0

    P

    RT

    P

    !RTVVV gR ==

    =P

    R

    P

    dP!

    RT

    G

    0

    )+(PT

    RTGTRTH =

    )3(

    =P

    P

    R

    P

    dP

    T

    !T

    RT

    H

    0

    =

    PP

    P

    R

    P

    dP!

    P

    dP

    T

    !T

    R

    S

    00)+(

    RT

    G

    RT

    H

    R

    S RRR=

    const T

    const T

    ? @ P=39T: e'perimental measurement %iven P=T data or an appropriate e!uation

    of state" we can evaluate #9and 19and hence all other residual properties

  • 7/24/2019 1. Fluids 1

    10/35

    { }

    { }

    ( ){ }

    ( ){ }

    ++=

    ++=

    ++=

    ++=+=

    P

    P

    g

    P

    PH

    g

    P

    g

    P

    P

    g

    P

    P

    T

    T

    g

    P

    gRg

    P

    dP

    T

    !RTTT"C#ATTMCPHRH

    P

    dP

    T

    !RTTTCH

    P

    dP

    T

    !RT"C#ATT$CPHRH

    P

    dP

    T

    !RTdTCHHHH

    0

    ,

    000

    0

    ,

    00

    0

    ,

    00

    0

    ,

    0

    )"""A"(

    )"""A"(

    0

    +

    +=

    +

    +=

    +

    +=

    +

    +=+=

    PP

    P

    g

    PP

    PS

    g

    P

    g

    PP

    P

    g

    PP

    P

    T

    T

    g

    P

    gRg

    P

    dP

    !P

    dP

    T

    !

    TRP

    P

    RT

    T

    "C#ATTMCPSRS

    P

    dP!

    P

    dP

    T

    !TR

    P

    PR

    T

    TCS

    P

    dP

    !P

    dP

    T

    !

    TRP

    P

    R"C#ATT$CPSRS

    P

    dP!

    P

    dP

    T

    !TR

    P

    PR

    T

    dTCSSSS

    0000

    00

    0000

    0

    000

    00

    000

    0

    )+(lnln)"""A"(

    )+(lnln

    )+(ln)"""A"(

    )+(ln0

  • 7/24/2019 1. Fluids 1

    11/35

    /alculate the enthalpy and entropy of saturated isobutane vapor at 280

    B from the following information: (+) compressibility

  • 7/24/2019 1. Fluids 1

    12/35

    9esidual properties by e!uation

    of state If ? @ f (P"T):

    The calculation of residual properties for gases

    and vapors through use of the virial e!uations and

    cubic e!uation of state

    =

    P

    P

    R

    P

    dP

    T

    !T

    RT

    H

    0

    =

    PP

    P

    R

    P

    dP!

    P

    dP

    T

    !T

    R

    S

    00

    )+(

  • 7/24/2019 1. Fluids 1

    13/35

    >se of the virial e!uation of state

    RT

    #P! =+

    =P

    R

    P

    dP!

    RT

    G

    0

    )+(two

  • 7/24/2019 1. Fluids 1

    14/35

    ,+ C#! +=

    =P

    R

    PdP!

    RTG

    0

    )+(

    Three

  • 7/24/2019 1. Fluids 1

    15/35

    >se of the cubic e!uation of state

    The generic cubic e!uation of state:

    ))((

    )(

    'V'V

    Ta

    'V

    RTP

    ++

    =

    )+)(+(+

    +

    ''

    '(

    '!

    ++

    =

    'RT

    Ta(

    )(

    ($'d

    ! =

    )+ln()+(

    0

    $dT

    d(d

    T

    !=

    0

    T)on*+

    ''

    'd$

    ++

    0

    )+)(+(

    )(

    ($Td

    Td

    !RT

    H

    r

    r

    R

    += +ln)(ln

    +

    ( ) ($Td

    Td!

    R

    S

    r

    r

    R

    += +

    ln

    )(lnln

    RT

    'P

  • 7/24/2019 1. Fluids 1

    16/35

    Find values for the residual enthalpy #9and the residual entropy 19

    for n

  • 7/24/2019 1. Fluids 1

    17/35

    Two

  • 7/24/2019 1. Fluids 1

    18/35

    GG = dGdG =SdTVdPdG =

    dTSdPVdTSdPV *a+*a+

    =

    V

    S

    VV

    SS

    dT

    dP*a+

    =

    =

    VdPTdSdH += STH =The latent heat of phase transition

    VT

    H

    dT

    dP*a+

    =The /lapeyron e!uation

    Ideal gas" and =l =g

    *a+

    v

    P

    RTVV ==

    )3+(

    ln

    Td

    PdRH

    *a+lv =

    The /lausius3/lapeyron e!uation

  • 7/24/2019 1. Fluids 1

    19/35

    VT

    H

    dT

    dP*a+

    =

    The /lapeyron e!uation: a vital connection between the properties of different phases

    )(TfP=

    T

    #AP*a+ =ln For the entire temperature range from the triple point

    to the critical point

    CT

    #AP*a+

    +=ln The Antoine e!uation" for a specific temperature range

    +++=

    +ln

    82-+ "C#AP*a+r

    The Cagner e!uation" over a wide

    temperature range

    rT=+

  • 7/24/2019 1. Fluids 1

    20/35

    Two

  • 7/24/2019 1. Fluids 1

    21/35

    Thermodynamic diagrams and tables

    A thermodynamic diagram represents the temperature"

    pressure" volume" enthalpy" and entropy of a substance on

    a single plot /ommon diagrams are:

    ; T1 diagram

    ; P# diagram (ln P vs #)

    ; #1 diagram (&ollier diagram)

    In many instances" thermodynamic properties are reported

    in tables The steam tables are the most thoroughcompilation of properties for a single material

  • 7/24/2019 1. Fluids 1

    22/35

    Fig 8,

  • 7/24/2019 1. Fluids 1

    23/35

    Fig 82

  • 7/24/2019 1. Fluids 1

    24/35

    Fig 84

  • 7/24/2019 1. Fluids 1

    25/35

    1uperheated steam originally at P+and T+e'pands through a no$$le to an

    e'haust pressure P, Assuming the process is reversible and adiabatic" determine

    the downstream state of the steam and G# for the following conditions:

    (a) P+@ +000 HPa" T+@ ,-0./" and P,@ ,00 HPa

    (b) P+@ +-0 psia" T+@ -00.F" and P,@ -0 psia

    1ince the process is both reversible and adiabatic" the entropy change

    of the steam is $ero(a) From the steam stable and the use of interpolation"

    At P+@ +000 HPa" T+@ ,-0./:#+@ ,64,6 H3Hg" 1+@ 86,-, H3HgB

    At P,@ ,00 HPa"

    1,@ 1+@ 86,-, H3HgB 1saturated vapor"

    the final state is in the two

  • 7/24/2019 1. Fluids 1

    26/35

    (a) From the steam stable and the use of interpolation"

    At P+@ +-0 psia" T+@ -00.F:

    #+@ +,742 Jtu3lbm" 1+@ +880, Jtu3lbm9

    At P,@ -0 psia"

    1,@ 1

    +@ +880, Jtu3lbmB K 1

    saturated vapor"

    the final state is in the superheat region:.T ,5,52,=

    l'm

    #+/HHH 066+, ==

    l'm#+/H 32++7-,=

    A 2 H i H f li id i ilib i i h

  • 7/24/2019 1. Fluids 1

    27/35

    A +- m2tanH contains -00 Hg of li!uid water in e!uilibrium with pure water

    vapor" which fills the remainder of the tanH The temperature and pressure are

    +00./" and +0+22 HPa From a water line at a constant temperature of 70./ and

    a constant pressure somewhat above +0+22 HPa" 7-0 Hg of li!uid is bled into

    the tanH If the temperature and pressure in the tanH are not to change as a resultof the process" how much energy as heat must be transferred to the tanHL

    mHQd+

    mUd )v += )(

    nergy balance:d+

    dmHQ

    d+

    mUd )v)v += )(

    vv mHmUQ = )(

    PVUH +=

    vvv mHPmVmHQ = )()(

    vvv mHHmHmQ = )()( ++,,

    At the end of the process" the tanH still contains saturated li!uid and

    saturated vapor in e!uilibrium at +00./ and +0+22 HPa

  • 7/24/2019 1. Fluids 1

    28/35

    vvv mHHmHmQ = )()( ++,,Cl(/d*a+/ra+ed

    -g

    -JH 70M0,62=

    Cl(/d*a+/ra+ed-g

    -JHl)v

    +00M+4+6=

    Cva0or*a+/ra+ed-g

    -JH

    v

    )v

    +00M0,878=

    From the steam table" the specific volumes of saturated li!uid and saturated

    vapor at +00./ are 000+044 and +872 m23Hg " respectively

    -JHmHmHm vvll)v ,++8+8)0,878(872+

    )00+0440)(-00(-+)+4+6(-00)( ++++++ =

    +=+=

    vl mmm ,,, 7-0872+

    )00+0440)(-00(-+-00 +=+

    += lv mm ,, 00+0440872+-+ +=

    -JHmHmHm vvll)v -,44-5)( ,,,,,, =+=

    -JmHHmHmQ vvv 6206,)0,62)(7-0(,++8+8-,44-5)()( ++,, ===

  • 7/24/2019 1. Fluids 1

    29/35

    rPPP= rTTT=

    = P

    P

    R

    P

    dP

    T

    !T

    RT

    H

    0

    =

    PP

    P

    R

    P

    dP

    !P

    dP

    T

    !

    TR

    S

    00 )+(

    = r

    r

    P

    r

    r

    Pr

    r

    R

    P

    dP

    T

    !T

    RT

    H

    0

    ,

    = rr

    r

    P

    r

    rP

    r

    r

    Pr

    r

    R

    P

    dP

    !P

    dP

    T

    !

    TR

    S

    00 )+(

    +0 !!! +=

    =

    r

    r

    r

    r

    P

    r

    r

    Pr

    r

    P

    r

    r

    Pr

    r

    )

    R

    PdP

    T!T

    PdP

    T!T

    RTH

    0

    +

    ,

    0

    0

    ,

    = rr

    r

    rr

    r

    P

    r

    rP

    r

    r

    Pr

    r

    P

    r

    rP

    r

    r

    Pr

    r

    R

    P

    dP!

    P

    dP

    T

    !T

    P

    dP!

    P

    dP

    T

    !T

    R

    S

    0

    +

    0

    +

    0

    0

    0

    0

    )+()+(

    ( ) ( ))""(

    +0

    1M&GAPRTRHR#RT

    H

    RT

    H

    RT

    H

    R

    R

    R

    =

    +=

    ( ) ( ))""(

    +0

    1M&GAPRTRSR#R

    S

    R

    S

    R

    S RRR

    =

    += Table - N +,

  • 7/24/2019 1. Fluids 1

    30/35

    RT

    T

    g

    P

    g HdTCHH ,0,,

    0 ++=

    RT

    T

    g

    P

    g HdTCHH +0++

    0 ++=

    RRT

    T

    g

    P HHdTCH +,,

    +

    +=

    RT

    T

    g

    P

    g SP

    PR

    T

    dTCSS ,

    0

    ,0,

    ,

    0

    ln ++=

    RT

    T

    g

    P

    g SP

    PR

    T

    dTCSS

    +0

    +

    0+

    +

    0

    ln

    ++=

    RRT

    T

    g

    P SSP

    PR

    T

    dTCS +,

    +

    ,,

    +

    ln +=

    RR

    H

    g

    P HHTTCH +,+, )( +=

    RR

    S

    g

    P SSP

    PCS +,

    +

    ,ln +=

    ti t = > # d 1 f + b t t ,00./ d 70 b if # d 1

  • 7/24/2019 1. Fluids 1

    31/35

    stimate =" >" #" and 1 for +

  • 7/24/2019 1. Fluids 1

    32/35

    Fig 87

    #

  • 7/24/2019 1. Fluids 1

    33/35

    1tep (a)

    T

    #AP*a+ =ln

    6,880+22+ln

    #A=

    4,04240ln

    #A=

    For @ ,72+-B"

    Psat@ +,77+ bar

    67666200

    )0+2+(ln06,+=

    =

    nr

    )

    n

    lv

    n

    T

    P

    RT

    HThe latent heat at normal boiling point:

    The latent heat at ,72+- B:

    250

    +

    +

    =

    nr

    r

    lv

    n

    lv

    T

    T

    H

    H

    mol

    JHlv ,+5+0=

    STH =%mol

    JSlv

    = 5476

    1tep (b)8-00=rT 02+80=rP( ) ( )

    065-0)""(

    +0

    ==

    += 1M&GAPRTRHR#

    RT

    H

    RT

    H

    RT

    H

    R

    R

    R

    ( ) ( )+0820)""(

    +0

    ==

    += 1M&GAPRTRSR#

    R

    S

    R

    S

    R

    S RRR

    mol

    JHR 244+ =

    %mol

    JSR

    = 550+

    1tep (c)

  • 7/24/2019 1. Fluids 1

    34/35

    1tep (c)

    mol

    J&&$CPHHg ,0-84)00"85276"28202+"687+A+-472"+-,72(2+45 ==

    %mol

    J

    &&$CPSSg

    =

    =

    +5,,,77++

    70ln2+45)00"85276"28202+"687+A+-472"+-,72(2+45

    1tep (d) +,7+=rT 72++=rP

    ( ) ( )420,

    +0

    =

    +=)

    R

    )

    R

    )

    R

    RT

    H

    RT

    H

    RT

    H

    ( ) ( )70-+

    +0

    =

    +=

    R

    S

    R

    S

    R

    S RRR

    mol

    JH

    R

    545-, =

    %mol

    JSR

    = +5+4,

    molJHH 24,22545-,0-84)244(,+5+0 =+==

    %mol

    JSS

    =+== 7,55+5+4+5,,)550(5476

    Total

    mol

    J

    PVHU 2,,+5+03)5,57)(70(24,22 ===

  • 7/24/2019 1. Fluids 1

    35/35

    %as mi'tures

    1imple linear mi'ing rules

    2

    )P) T2T

    )P) P2P

    stimate =" #9" and 19for an e!uimolar mi'ture of carbon dio'ide and propane

    at 4-0B and +40 bar

    %T2T

    )P) 227)5286)(-0(),204)(-0( =+=

    'arP2P

    )P) +--5)454,)(-0()5272)(-0( =+= 4+,=0rP

    22-+=0rT 86700 =!

    ,0-0+ =!

    +550)+-,0)(-0(),,40)(-0( =+=

    2 7280+0 =+= !!!

    mol

    )m

    P

    !RTV

    2

    7+68== ( ) ( ) 78,++0

    =

    +=

    0

    R

    0

    R

    0

    R

    RT

    H

    RT

    H

    RT

    H

    ( ) ( )0,6+

    +0

    =

    +=

    R

    S

    R

    S

    R

    S RRR

    lJH R 34627 %lJS R 3-85