1 Fabricating BRDFs at High Spatial Resolution Using Wave Optics Anat Levin, Daniel Glasner, Ying...

download 1 Fabricating BRDFs at High Spatial Resolution Using Wave Optics Anat Levin, Daniel Glasner, Ying Xiong, Fredo Durand, Bill Freeman, Wojciech Matusik,

If you can't read please download the document

Transcript of 1 Fabricating BRDFs at High Spatial Resolution Using Wave Optics Anat Levin, Daniel Glasner, Ying...

  • Slide 1
  • 1 Fabricating BRDFs at High Spatial Resolution Using Wave Optics Anat Levin, Daniel Glasner, Ying Xiong, Fredo Durand, Bill Freeman, Wojciech Matusik, Todd Zickler. Weizmann Institute, Harvard University, MIT
  • Slide 2
  • 2 Appearance fabrication Goal: Fabricating surfaces with user defined appearance Applications: - Architecture -Product design -Security markers visible under certain illumination conditions -Camouflage - Photometric stereo (Johnson&Adelson 09) Reflectance Acquisition Fabrication
  • Slide 3
  • 3 BRDF (Bidirectional Reflectance Distribution Function) z Dot (pixel) unit on surface ? x
  • Slide 4
  • 4 Reflectance Diffuse Shiny Fabricating spatially varying BRDF
  • Slide 5
  • 5 Controlling reflectance via surface micro-structure Reflectance Diffuse Shiny Surface micro structure What surface micro- structure produces certain reflectances?
  • Slide 6
  • 6 Surface Reflectance Previous work: BRDF fabrication using micro- facets theory (Weyrich et al. 09) 3cm Surface: oriented planner facets Limited spatial resolution Dot size ~ 3cm x 3cm
  • Slide 7
  • 7 Micro-facet model: limitations 3cm 0.3cm 0.03cm 0.003cm Surface scale Reflectance Wave effects at small scales => Substantial deviation from geometric optics prediction
  • Slide 8
  • 8 Previous work: BRDF design Weyrich et al. (2009); Fabricating microgeometry for custom surface reflectance. Matusik et al. (2009); Printing spatially-varying reflectance Finckh et al. (2010); Geometry construction from caustic images Dong et al. (2010); Fabricating spatially-varying subsurface scattering. Papas et al (2011); Goal-based caustics. Malzbender et al. (2012); Printing reflectance functions Lan et al. (2013); Bi-Scale Appearance Fabrication Geometric Optics
  • Slide 9
  • 9 Previous work: Wave scattering Wave models for BRDF: He et al. 91; Nayar et al. 91; Stam 99; Cuypers et al. 12 Holography e.g. Yaroslavsky 2004; Benton and Bove 2008 No practical surface construction Specific illumination conditions (often coherent), not general BRDF
  • Slide 10
  • 10 Contributions: Extra high resolution fabrication Analyze wave effects under natural illumination Analyze spatial-angular resolution tradeoffs Practical surface design algorithm compatible with existing micro-fabrication technology 3cm 0.1mm
  • Slide 11
  • 11 Surface should be stepwise constant with a small number of different depth values x z Prototype: Binary depth values Restricts achievable BRDFs 11 Photolithography and its limitations Geometric optics predicts: surface is a mirror Wave optics: variety of reflectance effects
  • Slide 12
  • 12 Preview: reflectance = Fourier transform Reflectance Diffuse Shiny Surface micro-structure Anisotropic Wide Narrow Wide
  • Slide 13
  • 13 Background: understanding light scattering 1. Coherent illumination: laser in physics lab 2. Incoherent illumination: natural world
  • Slide 14
  • 14 Wave effects on light scattering z x
  • Slide 15
  • 15 Surface scattering Fourier transform 2 Fourier transform See also: He et al. 91 Stam 99 z x
  • Slide 16
  • 16 Inverse width relationship 2 Wide surface features Narrow (shiny) reflectance x
  • Slide 17
  • 17 Inverse width relationship 2 Wide (diffuse) reflectance x Narrow surface features
  • Slide 18
  • 18 Inverse width relationship 2 impulse (mirror) reflectance x Flat surface
  • Slide 19
  • 19 Reflectance design with coherent illumination: Fourier power spectrum of surface height to produce reflectance Challenges: Complex non-linear optimization May not have a solution with stepwise constant heights Inexact solutions: speckles
  • Slide 20
  • 20 Speckles Noisy reflectance from an inexact surface x
  • Slide 21
  • 21 Reflectance design with coherent illumination: Fourier power spectrum of surface height to produce reflectance Challenges: Complex non-linear optimization May not have a solution with stepwise constant heights Inexact solutions: speckles Our approach: Bypass problems utilizing natural illumination Pseudo random surface replaces optimization Need to model partial coherence
  • Slide 22
  • 22 Incoherent illumination: Point source=> Area source Area source = collection of independent coherent point sources x
  • Slide 23
  • 23 Incoherent reflectance: blurring coherent reflectance by source angle * x Angular Convolution Illumination angle Coherent reflectance
  • Slide 24
  • 24 Reflectance averaged over illumination angle is smooth x 24 Incoherent reflectance: blurring coherent reflectance by source angle
  • Slide 25
  • 25 Challenge: avoiding speckles Angular v.s. spatial resolution tradeoffs. Partial coherence. Our analysis:
  • Slide 26
  • 26 Angular resolution => Spatial coherence resolution x
  • Slide 27
  • 27 Angular resolution => spatial coherence resolution x Coherent area Phase change Coherent: Incoherent: Partial coherent:
  • Slide 28
  • 28 Angular resolution -> spatial coherence resolution x Coherent area Coherent: Incoherent: Partial coherent:
  • Slide 29
  • 29 Angular resolution => Spatial coherence resolution x Each coherent region emits a coherent field with speckles
  • Slide 30
  • 30 Angular resolution => Spatial coherence resolution x Each coherent region emits a coherent field with speckles
  • Slide 31
  • 31 Angular resolution => Spatial coherence resolution x Each coherent region emits a coherent field with speckles
  • Slide 32
  • 32 Angular resolution => Spatial coherence resolution Averaging different noisy reflectances from multiple coherent regions => smooth reflectance. x
  • Slide 33
  • 33 Angular resolution => Spatial coherence resolution x Dot size Coherent size
  • Slide 34
  • 34 Angular resolution => Spatial coherence resolution x Coherent size Dot size
  • Slide 35
  • 35 Angular resolution => Spatial coherence resolution x Dot size Coherent size Human eye resolution + typical angle of natural sources. => Smooth reflectance (see paper)
  • Slide 36
  • 36 Recap: Coherent BRDF = Fourier power spectrum of surface height. Incoherent BRDF = Fourier power spectrum of surface height, blurred by illumination angle.
  • Slide 37
  • Next: Design surface height to produce desired BRDF. Coherent design: Fourier power spectrum to produce BRDF - Complex non linear optimization Incoherent design: Blurred Fourier power spectrum to produce BRDF - Pseudo randomness is sufficient
  • Slide 38
  • 38 Surface tiling algorithm x x z z
  • Slide 39
  • 39 Surface tiling algorithm x Coherent illumination => noisy reflectance
  • Slide 40
  • 40 Surface tiling algorithm x
  • Slide 41
  • Step size distribution 41 Surface sampling Sampled surface micro-structure Reflectance Diffuse Glossy Shiny
  • Slide 42
  • 42 BRDFs produced by our approach Anisotropic Anisotropic anti-mirrors Isotropic Anti-mirror
  • Slide 43
  • 43 Fabrication results Electron microscope scanning of fabricated surface 20 m
  • Slide 44
  • 44 Imaging reflectance from fabricated surface Specular spike, artifact of binary depth prototype, can be removed with more etching passes (see paper)
  • Slide 45
  • Imaging under white illumination at varying directions wafer camera Moving light
  • Slide 46
  • Vertical illuminationHorizontal illumination Negative image Anisotropic BRDFs at opposite orientations
  • Slide 47
  • VerticalHorizontal Negative image
  • Slide 48
  • Narrow Isotropic Anti- mirror large incident angle: Anti-mirror kids: bright Background: dark Small incident angle: Anti-mirror kids: dark Background: bright
  • Slide 49
  • 49 Limitations
  • Slide 50
  • 50 Limitations
  • Slide 51
  • 51 Summary Spatially varying BRDF at high spatial resolution (220 dpi). Analyze wave effects under natural illumination. Account for photolithography limitations. Pseudo randomness replaces sophisticated surface design.
  • Slide 52
  • Thank you! 52 20 m Wafer available after session