02 RN31552EN10GLA0 the Physical Layer

118
1 © Nokia Siemens Networks RN31552EN10GLN0 The Physical Layer 3GRPLS (RN3155) – Module 2 Part I: Channel Mapping Part II: Transport Channel Formats Part III: Cell Synchronisation Part IV: Common Control Physical Channels Part V: Physical Random Access Part VI: Dedicated Physical Channel Downlink Part VII: Dedicated Physical Channel Uplink Part VIIII: HSDPA Physical Channel (HS-PDSCH) Part IX: HSUPA Physical Channels (E-DCH)

Transcript of 02 RN31552EN10GLA0 the Physical Layer

Page 1: 02 RN31552EN10GLA0 the Physical Layer

1 © Nokia Siemens Networks RN31552EN10GLN0

The Physical Layer3GRPLS (RN3155) –

Module 2

Part I: Channel MappingPart II: Transport Channel FormatsPart III: Cell SynchronisationPart IV: Common Control Physical ChannelsPart V: Physical Random AccessPart VI: Dedicated Physical Channel DownlinkPart VII: Dedicated Physical Channel UplinkPart VIIII: HSDPA Physical Channel (HS-PDSCH) Part IX: HSUPA Physical Channels (E-DCH)

Page 2: 02 RN31552EN10GLA0 the Physical Layer

3 © Nokia Siemens Networks RN31552EN10GLN0

Part I Channel Mapping

Page 3: 02 RN31552EN10GLA0 the Physical Layer

6 © Nokia Siemens Networks RN31552EN10GLN0

Logical Channelscontent is organised in separate channels, e.g.

System information, paging, user data, link management

Transport Channelslogical channel information is organised on transport channel

resources before being physically transmitted

Physical Channels

(UARFCN, spreading code)

Frames

Iub interface

Radio Interface Channel Organisation (R99 model)

Page 4: 02 RN31552EN10GLA0 the Physical Layer

12 © Nokia Siemens Networks RN31552EN10GLN0

P-CCPCHPCH

BCH

CTCH

DCCH

CCCH

PCCH

BCCH

DCH

CPICHS-SCHP-SCH

FACH

HS-

DSCH

AICH

HS-PDSCH

DPDCH

S-CCPCH

DTCH

PICH

Logical

Channels

Transport

Channels

Physical

Channels

E-AGCH

Channel Mapping DL (Network Point of View)

HS-SCCH

F-DPCH

E-RGCHE-HICH

Page 5: 02 RN31552EN10GLA0 the Physical Layer

13 © Nokia Siemens Networks RN31552EN10GLN0

DCCH

DCHDPDCH

DTCH

Logical

Channels

Transport

Channels

Physical

Channels

RACHCCCH PRACH

DPCCH

Channel Mapping UL (Network Point of View)

E-DPCCHE-DPDCHE-DCH

Page 6: 02 RN31552EN10GLA0 the Physical Layer

15 © Nokia Siemens Networks RN31552EN10GLN0

Example – Channel configuration during callLogical

Channels

Transport

Channels

Physical

Channels

Data

DCCH0-4

DCH2-4

DPDCH

DTCH1 DPCCH

RRC signalling

Speechdata

DCH1

AMR speech connection utilises multiple transport channelsRRC connection utilises multiple logical channels

DCH5DTCH2NRTdata

AMR speech+

NRT data

Page 7: 02 RN31552EN10GLA0 the Physical Layer

17 © Nokia Siemens Networks RN31552EN10GLN0

Part II Transport Channel Formats

Page 8: 02 RN31552EN10GLA0 the Physical Layer

19 © Nokia Siemens Networks RN31552EN10GLN0

MAC Layer MAC Layer

PHY Layer PHY LayerL1

FP/AAL2

L1

FP/AAL2

TFITBS

TTI radio frames in use

Transport Channel

UE Node B RNC

TFITBS

The Transfer of Transport Blocks

Page 9: 02 RN31552EN10GLA0 the Physical Layer

21 © Nokia Siemens Networks RN31552EN10GLN0

TB

Transport Block

TF

Transport FormatTBS

Transport Block Set

TFS

Transport Format SetTFC

Transport Format CombinationTFCS

Transport Format Combination Set

DCH 2

DCH 1

TB TB TB

TBTB

TBTB

TB

TBS

TF

TFS

TFC

TFCS

TTI TTI

TTI

TTI

TTITTI

TB

TBTB

Transport Formats

Page 10: 02 RN31552EN10GLA0 the Physical Layer

23 © Nokia Siemens Networks RN31552EN10GLN0

MAC Layer

PHY Layer

RRC Layer

conf

igur

atio

n

Semi-Static Part• TTI• Channel Coding• CRC size• Rate matching

Dynamic Part• Transport Block Size• Transport Block Set Size

Transport Format

Example: semi-static partdynamic part:-

TTI = 10 ms-

turbo coding

-

transport block size:

64

64

64

128-

CRC size = 0

-

transport block set size:

1 2 4 2- ...

TFI1 TFI2 TFI3 TFI4

TrCHs

Transport Formats

TrCH: Transport Channel

Page 11: 02 RN31552EN10GLA0 the Physical Layer

25 © Nokia Siemens Networks RN31552EN10GLN0

1...5000 bitsgranularity: 1 bit

0...5000 bitsgranularity: 1 bit

0...5000 bitsgranularity: 1 bit

246 bits

0...5000 bitsgranularity: 1 bit

246 bits

1...200000 bitsgranularity: 1 bit

0...200000 bitsgranularity: 1 bit

0...200000 bitsgranularity: 1 bit

0...200000 bitsgranularity: 1 bit

20 ms

10 ms

10, 20, 40 & 80 ms

10 & 20 ms

10, 20, 40 & 80 ms

BCH

FACH

RACH

PCH

DCH

convolutional 1/2

convolutional 1/2

convolutional 1/2 & 1/3; turbo 1/3

convolutional 1/2

convolutional 1/2 & 1/3; turbo 1/3

16

0, 8, 12, 16 & 24

0, 8, 12, 16 & 24

0, 8, 12, 16 & 24

0, 8, 12, 16 & 24

Transport Block Size

Transport Block Set Size TTI coding types

and ratesCRCsize

Semi-static PartDynamic Part

(based on TS 25.302 V5.9.0)

Transport Format Ranges

Page 12: 02 RN31552EN10GLA0 the Physical Layer

27 © Nokia Siemens Networks RN31552EN10GLN0

MAC-hsMAC-hs

MAC-d MAC-d

PHY Layer PHY LayerL1

FP/AAL2

L1

FP/AAL2

HS- DSCH

UE Node B RNC

The Transfer of Transport Blocks – HS-DSCH

MAC-d PDU

TFI

TBS

TFI

TBS

TFI

TBS

FP/HS-DSCH FP/HS-DSCH

MAC-d

MAC-c/sh

OPT

ION

AL

HS-PDSCH

Flow Control

Page 13: 02 RN31552EN10GLA0 the Physical Layer

29 © Nokia Siemens Networks RN31552EN10GLN0

MAC-d Layer

PHY Layer

RRC Layer

conf

igur

atio

n

Static Part• TTI• Channel Coding• CRC size

Dynamic Part• Transport block size (same as

Transport block set size)• Redundancy version/Constellation• Modulation scheme

Transport Format

Example: static part

dynamic part:-

TTI = 2 ms-

turbo coding

-

transport block size:

357

4420

1711

699-

CRC size = 24

-

modulation:

QPSK

16-QAM

16-QAM

QPSK

TFRI1 TFRI2 TFRI3 TFRI4

HS-DSCH

Transport Formats – HS-DSCH

MAC-hs Layer

TFRI; Transport Format and Resource Indicator

Page 14: 02 RN31552EN10GLA0 the Physical Layer

30 © Nokia Siemens Networks RN31552EN10GLN0

Transport Format for HS-DSCH

The instantaneous data rate range supported is (determined on a per-2ms interval):• A TBS of 137 bits corresponding to 68.5 kbps (single code, QPSK,

strong coding)• A TBS of 28457 bits corresponding to 14.228 Mbps (15 codes,

16QAM, very low coding)

1 to 200 000 bitsgranularity: 8 bit

= Transport Block Size 2 msHS-DSCH turbo 1/3 24

Transport Block Size

Transport Block Set Size TTI coding types

and ratesCRCsize

Static PartDynamic Part

QPSK, 16-QAM

Modulation

1 to 8

Redundancyversion

Page 15: 02 RN31552EN10GLA0 the Physical Layer

32 © Nokia Siemens Networks RN31552EN10GLN0

UE Node B

The Transfer of Transport Blocks – E-DCH

PHY

MAC-es / MAC-e

MAC-d

PHYMAC-e

PHYE-DCH FP Uu

RLC

S-RNC

modifications:MAC-es

handling:• in-sequence delivery (reordering) • SHO data combining

Node B

modifications:MAC-e

handling:• H-ARQ retransmission • Scheduling & MAC-e multiplexing

UE

modifications:MAC-es & MAC-e:• H-ARQ retransmission • Scheduling & MAC-e multiplexing• E-DCH TFC selection

S-RNC

PHY

MAC-esMAC-d

E-DCH FPIub

RLC

Page 16: 02 RN31552EN10GLA0 the Physical Layer

33 © Nokia Siemens Networks RN31552EN10GLN0

Transport Format for E-DCH & UE capability classes

E-

DCHCategory

max. E-DCHCodes

min. SF

2 & 10 ms

TTI E-DCH

support

max. #. of E-DCH Bits* /

10 ms TTI

max. # of E-DCH Bits*

/ 2 ms

TTI

Referencecombination

Class1 1 4 10 ms only 7110 - 0.73 Mbps2 2 4 10 & 2 ms 14484 2798 1.46 Mbps3 2 4 10 ms only 14484 - 1.46 Mbps4 2 2 10 & 2 ms 20000 5772 2.92 Mbps5 2 2 10 ms only 20000 - 2.0 Mbps6 4 2 10 & 2 ms 20000 11484 5.76 Mbps

• “Dual-branch BPSK” (resulting in QSPK output) is the only modulation used in HSUPA (Rel. 6)

•There can only be 1 transport block in each TTI, →Transport block size = Transport Block Set Size•Coding types and rates: Turbo coding 1/3Note: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4

* Maximum No. of bits / E-DCH transport block

Page 17: 02 RN31552EN10GLA0 the Physical Layer

34 © Nokia Siemens Networks RN31552EN10GLN0

MAC-d Layer

PHY Layer

RRC Layer

conf

igur

atio

n

Static Part• TTI (2ms, 10ms)• Channel Coding• CRC size• Modulation (always BPSK)

Dynamic Part• Transport block size (same as

Transport block set size)• Redundancy version/Constellation

Transport Format

Example: static part

dynamic part:-

TTI = 2 ms, 10 ms-

turbo coding

-

transport block size:

357

2420

1711

699-

CRC size = 24

BPSK

BPSK

BPSK

BPSK

TFRI1 TFRI2 TFRI3 TFRI4

E-DCH

Transport Formats – E-DCH

MAC-es/MAC-e Layer

Page 18: 02 RN31552EN10GLA0 the Physical Layer

36 © Nokia Siemens Networks RN31552EN10GLN0

Example: Transport Formats in AMR callDCH 1: AMR class A

bits

TBS size: 1TB size: 39

bits(SID)

TBS size = 0(DTX)

TBS size: 1TB size: 103 bits

TTI = 20 ms

TBS size = 0(DTX)

DCH 2: AMR class B bits

DCH 3: AMR class C bits

Convolutional codingCoding rate: third

TTI = 20 msCoding type: convolutional

Coding rate: third

CRC size: 12 bits CRC size: 0 bits CRC size: 0 bits

TTI = 20 ms

Coding rate: halfConvolutional coding

DCH 24: RRC Connection

TBS size = 0(DTX)

TBS size = 1TB size: 148 bits

TTI = 40 msCoding type: convolutional

Coding rate: third

CRC size: 16 bits

TBS size:1TB size: 81 bits

TBS size: 1TB size: 60 bits

TBS size = 0(DTX)

12.2 kbit/s3.7 kbit/s

Example

Page 19: 02 RN31552EN10GLA0 the Physical Layer

38 © Nokia Siemens Networks RN31552EN10GLN0

Part III Cell Synchronisation

Page 20: 02 RN31552EN10GLA0 the Physical Layer

40 © Nokia Siemens Networks RN31552EN10GLN0

Cell Synchronisation

Detect cellsAcquire slot synchronisation

Phase 1 – P-SCH

Phase 2 – S-SCH

Phase 3 – P-CPICH

Acquire frame synchronisationIdentify the code group of the cell found in the first stepDetermine the exact primary scrambling code used by the found cellMeasure level & quality of the found cell

Page 21: 02 RN31552EN10GLA0 the Physical Layer

42 © Nokia Siemens Networks RN31552EN10GLN0

Cp

= Primary Synchronisation CodeCs

= Secondary Synchronisation Code

10 ms Frame

CP CP

2560 Chips 256 Chips

Cs1 Cs2 Cs15

Slot 0 Slot 1 Slot 14

CP CP CP

Cs1

Primary Synchronisation Channel (P-SCH)

Secondary Synchronisation Channel (S-SCH)

Slot 0

Synchronisation Channel (SCH)

Page 22: 02 RN31552EN10GLA0 the Physical Layer

44 © Nokia Siemens Networks RN31552EN10GLN0

15

15

scrambling

code group

group 00group 01

group 02group 03

group 05

group 04

group 62

group 63

1 1 2 8 9 10 15 8 10 16 2 7 15 7 16

1 1 5 16 7 3 14 16 3 10 5 12 14 12 10

1 2 1 15 5 5 12 16 6 11 2 16 11 12

1 2 3 1 8 6 5 2 5 8 4 4 6 3 7

1 2 16 6 6 11 5 12 1 15 12 16 11 2

1 3 4 7 4 1 5 5 3 6 2 8 7 6 8

9 11 12 15 12 9 13 13 11 14 10 16 15 14 16

9 12 10 15 13 14 9 14 15 11 11 13 12 16 10

slot number0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

11

11 11

11 11

11 11

11 11

15

15

15

15 15

15

15

15 15

15 15

5

5

I monitor the S-SCH

SSC Allocation for S-SCH

Page 23: 02 RN31552EN10GLA0 the Physical Layer

46 © Nokia Siemens Networks RN31552EN10GLN0

CP

2560 Chips 256 Chips

Synchronisation Channel (SCH)

P-CPICH

10 ms Frame

applied speading code = cell‘s primary scrambling code

Cch,256,0

• Phase reference• Measurement reference

P-CPICH

Cell scrambling code? I get it with

trial & error!

Primary Common Pilot Channel (P-CPICH)

Page 24: 02 RN31552EN10GLA0 the Physical Layer

48 © Nokia Siemens Networks RN31552EN10GLN0

Received Signal Code Power (in dBm)CPICH RSCP

received energy per chip divided by the power density in the band

(in dB)CPICH Ec/No

received wide band power, including thermal noise and noise generated in the receiver

UTRA carrier RSSI

CPICH Ec/No = CPICH RSCPUTRA carrier RSSI

CPICH Ec/No

0: < -241: -23.52: -233: -22.5...47: -0.548: 049: >0

Ec/No values in dB

CPICH RSCP

-5: < -120-4: -119:0: -1151: -114:89: -2690: -2591: ≥

-25RSCP values in dBm

GSM carrier RSSI

0: -1101: -1092: -108:71: -3972: -3873: -37

RSSI values in dBm

P-CPICH as Measurement Reference

Page 25: 02 RN31552EN10GLA0 the Physical Layer

50 © Nokia Siemens Networks RN31552EN10GLN0

CP

2560 Chips 256 Chips

Synchronisation Channel (SCH)

P-CCPCH

10 ms Frame

P-CCPCH

Finally, I get the cell system information

• channelisation code: Cch,256,1• no TPC, no pilot sequence• 27 kbps (due to off period)• organised in MIBs and SIBs

Primary Common Control Physical Channel (P-CCPCH)

Page 26: 02 RN31552EN10GLA0 the Physical Layer

51 © Nokia Siemens Networks RN31552EN10GLN0

• WCEL: PtxPrimaryCPICH•The parameter determines the transmission power of the primary CPICH channel. •It is used as a reference for all common channels. •[-10 dBm … 50 dBm], step 0.1 dB, default: 33dBm (WPA power = 43 dBm)

• WCEL: PtxPrimarySCH•Transmission power of the primary synchronization channel, the value is relative to primary CPICH transmission power.•[-35 dB … 15 dB], step size 0.1 dB, default: -3 dB

• WCEL: PtxSecSCH•Transmission power of the secondary synchronization channel, the value is relative to primary CPICH transmission power.•[-35 dB… 15 dB], step size 0.1 dB, default: -3 dB

• WCEL: PtxPrimaryCCPCH•This is the transmission power of the primary CCPCH channel, the value is relative to primary CPICH transmission power.•[-35 dB … 15 dB], step size 0.1 dB, default: -5 dB

• WCEL: PriScrCode•Identifies the downlink scrambling code of the Primary CPICH (Common Pilot Channel) of the Cell.•[0 ... 511]

NSN Parameters for Cell Search

Page 27: 02 RN31552EN10GLA0 the Physical Layer

52 © Nokia Siemens Networks RN31552EN10GLN0

Blank Page

Page 28: 02 RN31552EN10GLA0 the Physical Layer

54 © Nokia Siemens Networks RN31552EN10GLN0

SRNC

time

Node B

3112

3113

3114

3115

3116

3117

3118

RFN

time

128

129

130

131

132

133

134

BFN

135

DL Node Synchronization

( T1 )

UL Node Synchronization

( T1,T2,T3 )

T1

(T4)

T2

T3

(T4 – T1) – (T3 – T2)= Round Trip Delay

(RTD) determination

for DCH services

T1, T2, T3

range: 0 .. 40959.875 msresolution: 0.125 ms

DL offset

UL offset

user plane defined on

DCH, FACH & DSCH

BFN: Node B Frame

Number counter

0..4095 frames

RFN: RNC Frame

Number counter

0..4095 frames

Node Synchronisation

Page 29: 02 RN31552EN10GLA0 the Physical Layer

56 © Nokia Siemens Networks RN31552EN10GLN0

Node B with three

sectorised cells

cell1

cell2

cell3

1 TS

BFN

S

C

H

S

C

H

S

C

H

S

C

H

S

C

H

S

C

H

S

C

H

SFN = BFN + T_cell1

SFN = BFN + T_cell2

SFN = BFN + T_cell3

T_cell3

T_cell1

T_cell2

SFN: Cell System Frame Numberrange: 0..4095 frames

T_cell: n

256 chips, n = 0..9

cell3 cell2

cell1

S

C

H

Cell Synchronization and Sectorised Cells

Page 30: 02 RN31552EN10GLA0 the Physical Layer

57 © Nokia Siemens Networks RN31552EN10GLN0

• WCEL: Tcell•Timing delay is used for defining the start of SCH, P-CPICH, Primary CCPCH and DL Scrambling Code(s) in a cell relative to BFN.•[0 ... 2304] chips, step 256 chips, no default value.

NSN Parameters for Sectorised Cells

Page 31: 02 RN31552EN10GLA0 the Physical Layer

58 © Nokia Siemens Networks RN31552EN10GLN0

Part IV Common Control Physical Channels

Page 32: 02 RN31552EN10GLA0 the Physical Layer

60 © Nokia Siemens Networks RN31552EN10GLN0

Slot 0 Slot 1 Slot 2 Slot 14

10 ms Frame

S-CCPCH

TFCI

(optional) Data Pilot bits

• carries PCH and FACH• Multiplexing of PCH and FACH on one

S-CCPCH, even one frame possible• with and without TFCI (UTRAN set)• SF = 4..256• (18 different slot formats• no inner loop power control

Secondary Common Control Physical Channel (S-CCPCH)

Page 33: 02 RN31552EN10GLA0 the Physical Layer

61 © Nokia Siemens Networks RN31552EN10GLN0

Secondary CCPCH in NSN RAN

The Secondary CCPCH (Common Control Physical Channel) carries FACH and PCH transport channelsIn RAN’04, number of SCCPCHs increase from two to three. The three SCCPCH channel configuration is needed only if SAB – Service area Broadcast is used.Parameter NbrOfSCCPCHs

(Number of SCCPCHs) tells how many SCCPCHs will be configured for the cell. (1, 2 or 3)• If only one SCCPCH is used in a cell, it will carry FACH-c

(Containing DCCH/CCCH /BCCH), FACH-u (containing DTCH) and PCH. FACH and PCH multiplexed onto the same SCCPCH.

• If two SCCPCHs are used in a cell, the first SCCPCH will always carry PCH only and the second SCCPCH will carry FACH-u and FACH-c.

Page 34: 02 RN31552EN10GLA0 the Physical Layer

62 © Nokia Siemens Networks RN31552EN10GLN0

Logical channel

Transport channel

Physical channel

DTCH DCC

H

CCC

H

BCC

H

CTCH

FACH-

u

PCHFACH-

s

SCCPCH connecte

d

SCCPCH idle

PCCH

FACH-

c

FACH-

c

SCCPCH page

For SAB For SAB

SF 64 SF 128 SF 256

DL common Channel configuration in case of three SCCPCH

Secondary CCPCH in NSN RAN

Page 35: 02 RN31552EN10GLA0 the Physical Layer

63 © Nokia Siemens Networks RN31552EN10GLN0

FACH-uFACH-u FACH-c

(connected)

FACH-c

(connected)

FACH-c

(idle)

FACH-c

(idle)

TFSTFS

TTITTI

Channel

coding

Channel

coding

CRCCRC

0: 0x360 bits (0 kbit/s)

1: 1x360 bits (36 kbit/s)

0: 0x360 bits (0 kbit/s)

1: 1x360 bits (36 kbit/s)

10 ms10 ms

TC 1/3TC 1/3

16 bit16 bit

0: 0x168 bits (0 kbit/s)

1: 1x168 bits (16.8 kbit/s)

2: 2x168 bits (33.6 kbit/s)

0: 0x168 bits (0 kbit/s)

1: 1x168 bits (16.8 kbit/s)

2: 2x168 bits (33.6 kbit/s)

10 ms10 ms

CC 1/2CC 1/2

16 bit16 bit

0: 0x168 bits (0 kbit/s)

1: 1x168 bits (16.8 kbit/s)

0: 0x168 bits (0 kbit/s)

1: 1x168 bits (16.8 kbit/s)

10 ms10 ms

CC 1/3CC 1/3

16 bit16 bit

FACH-sFACH-s

0: 0x168 bits (0 kbit/s)

1: 1x168 bits (16.8 kbit/s)

0: 0x168 bits (0 kbit/s)

1: 1x168 bits (16.8 kbit/s)

10 ms10 ms

CC 1/3CC 1/3

16 bit16 bit

PCHPCH

0: 0x80 bits (0 kbit/s)

1: 1x80 bits (8 kbit/s)

0: 0x80 bits (0 kbit/s)

1: 1x80 bits (8 kbit/s)

10 ms10 ms

CC 1/2CC 1/2

16 bit16 bit

Secondary CCPCH in NSN RAN

Page 36: 02 RN31552EN10GLA0 the Physical Layer

64 © Nokia Siemens Networks RN31552EN10GLN0

FACH-

u

PCHFACH-

s

SCCPCH connecte

d

SCCPCH idle

FACH-

c

FACH-

c

SCCPCH page

TFCS01

TFCS01

0 kbit/s8 kbit/s0 kbit/s8 kbit/s

TFCS00010210

TFCS00010210

0+0 = 0 kbit/s0+16.8 = 16.8 kbit/s0+33.6 = 33.6 kbit/s

36+0 = 36 kbit/s

0+0 = 0 kbit/s0+16.8 = 16.8 kbit/s0+33.6 = 33.6 kbit/s

36+0 = 36 kbit/s

TFCS001001

TFCS001001

0+0 = 0 kbit/s16.8+0 = 16.8 kbit/s0+16.8 = 16.8 kbit/s

0+0 = 0 kbit/s16.8+0 = 16.8 kbit/s0+16.8 = 16.8 kbit/s

Maximum transport channel throughput = 36

kbit/s

Maximum transport channel

throughput = 8 kbit/s

Maximum transport channel throughput = 16.8

kbit/s

Secondary CCPCH in NSN RAN

Page 37: 02 RN31552EN10GLA0 the Physical Layer

66 © Nokia Siemens Networks RN31552EN10GLN0

Node B

UTRANP-CCPCH/BCCH (SIB 5)

common channel

definition, including

S-CCPCH carrying one PCH

S-CCPCH carrying one PCH

S-CCPCH carrying one PCH

S-CCPCH without PCH

S-CCPCH without PCH

a lists ofUE

Index of S-CCPCHs

0

1

K-1

UE‘s paging channel:Index = IMSI mod Ke.g. if IMSI mod K = 1

„my paging channel“

RNC

S-CCPCH and the Paging Process

Page 38: 02 RN31552EN10GLA0 the Physical Layer

67 © Nokia Siemens Networks RN31552EN10GLN0

2k

frames

k = 3..9

Duration:

CN domain specific DRX cycle lengths

(option)

UE

CS Domain PS Domain

Update:a) derived by NAS

negotiation

b) otherwise:

system info

Update:locally with

system info

k1 k2

UTRAN

Update:a) derived by NAS

negotiation

b) otherwise:

system info

k3

RRC connected mode

stores

if RRC idle:

UE DRX cycle length is

min (k1

, k2

)

if RRC connected:

UE DRX cycle length is

min (k3

, kdomain with no Iu-signalling connection

)

Example with

two CN domains

Paging and Discontinuous Reception (FDD mode)

Page 39: 02 RN31552EN10GLA0 the Physical Layer

69 © Nokia Siemens Networks RN31552EN10GLN0

PICH frame

S-CCPCH frame, associated with PICH frame

PICH

= 7680chips

b287 b288 b299b286b0 b1

for paging indication no transmission

# of paging

indicators per frame

(Np)183672144

S-CCPCH

S-CCPCH and its associated PICH

Page 40: 02 RN31552EN10GLA0 the Physical Layer

70 © Nokia Siemens Networks RN31552EN10GLN0

UE

my paging

indicator (PI)

PI

= ( IMSI div 8192) mod Np

DRX index

number of paging indicators

18, 36, 72, 144

Paging Occasion

=

(IMSI div K) mod (DRX cycle length) + n * DRX cycle length

UE

When will

I get paged? number of S-CCPCH with PCH

FDD

mode

Paging Indicator and Paging Occasion (FDD mode)

Page 41: 02 RN31552EN10GLA0 the Physical Layer

72 © Nokia Siemens Networks RN31552EN10GLN0

Example – Paging instant and group calculation

K (Number of S-CCPCH with PCH) 1k (DRX length) 6DRX cycle length 64 framesIMSI 358506452377Which S-CCPCH #? 0IMSI div K 358506452377When (Paging occation, SFN)? 25 + n*DRX cycle length

Np 72 PIs/frameDRX Index 43762994My PI? 26

Number of subsc. In LA/RA 100000Number of subsc. Per S-CCPCH 100000Number of subsc. Paging occation (PICH frame) 1562.5Number of subsc. Per PI 21.7

Page 42: 02 RN31552EN10GLA0 the Physical Layer

73 © Nokia Siemens Networks RN31552EN10GLN0

• WCEL: NbrOfSCCPCHs•The parameter defines how many S-CCPCH are configured for the given cell.•Range: [1 … 3], step: 1; default = 1

• WCEL: PtxSCCPCH1

(carries FACH & PCH)•This is the transmission power of the 1st S-CCPCH channel, the value is relative to primary CPICH transmission power.•Range: [-35 dB … 15 dB] , step size 0.1 dB, default: 0 dB

• WCEL: PtxSCCPCH2

(carries PCH only)•This is the transmission power of the 2nd S-CCPCH channel, the value is relative to primary CPICH transmission power.•Range: [-35 dB … 15 dB] , step size 0.1 dB, default: - 5 dB

• WCEL: PtxSCCPCH3

(carries FACH only)•This is the transmission power of the SCCPCH channel which carries only a FACH (containing CCCH) and a FACH (containing CTCH).•This parameter is only needed when Service Area Broadcast(SAB)is activated in a cell(three S-CCPCH channel configuration).•Range: [-35 dB … 15 dB] , step size 0.1 dB, default: - 2 dB

NSN Parameters for S-CCPCH and Paging

Page 43: 02 RN31552EN10GLA0 the Physical Layer

74 © Nokia Siemens Networks RN31552EN10GLN0

• WCEL: PtxPICH•This is the transmission power of the PICH channel. •It carries the paging indicators which tell the UE to read the paging message from the associated secondary CCPCH. •This parameter is part of SIB 5.•[-10 dB..5 dB]; step 1 dB; default: -8 dB (with Np =72)

•NP•Repetition of PICH bits•[18, 36, 72, 144] with relative power [-10, -10, -8, -5] dB

• RNC: CNDRXLength•The DRX cycle length used for CN domain to count paging occasions for discontinuous reception.•This parameter is given for CS domain and PS domain separately.•This parameter is part of SIB 1.•[640, 1280, 2560, 5120] ms; default = 640 ms.

• WCEL: UTRAN_DRX_length•The DRX cycle length used by UTRAN to count paging occasions for discontinuous reception.•[80, 160, 320, 640, 1280, 2560, 5120] ms; default = 320 ms

NSN Parameters for S-CCPCH and Paging

Page 44: 02 RN31552EN10GLA0 the Physical Layer

78 © Nokia Siemens Networks RN31552EN10GLN0

Node B RNC

FACH Data Frame

CFN TFI

Transmit Power Level

TB TB

Iub

UE

Uu

TFCI

(optional) Data

Pilot bits

max. transmit

power for S-CCPCH

0..25.5 dB,step size 0.1

Transmit Power Level

PO1 PO3

Power offsets for TFCI and pilot bits are

defined during channel setup

FACH and S-CCPCH

Page 45: 02 RN31552EN10GLA0 the Physical Layer

79 © Nokia Siemens Networks RN31552EN10GLN0

• WCEL: PowerOffsetSCCPCHTFCI•Defines the power offset for the TFCI symbols relative to the downlink transmission power of a Secondary CCPCH.•This parameter is part of SIB 5.

•P01_15/30/60•15 kbps: [0..6 dB]; step 0.25 dB; default: 2 dB•30 kbps: [0..6 dB]; step 0.25 dB; default: 3 dB•60 kbps: [0..6 dB]; step 0.25 dB; default: 4 dB

NSN Parameters for S-CCPCH Power Setting

Page 46: 02 RN31552EN10GLA0 the Physical Layer

80 © Nokia Siemens Networks RN31552EN10GLN0

Part V Physical Random Access

Page 47: 02 RN31552EN10GLA0 the Physical Layer

82 © Nokia Siemens Networks RN31552EN10GLN0

Node BUEPRACH (preamble)

PRACH (preamble)

PRACH (preamble)

PRACH (message part)

AICH

No response

by the

Node B

No response

by the

Node B

I just detected

a PRACH preamble

OLA!

Random Access – the Working Principle

Page 48: 02 RN31552EN10GLA0 the Physical Layer

84 © Nokia Siemens Networks RN31552EN10GLN0

SFN mod 2 = 0 SFN mod 2 = 0SFN mod 2 = 1P-CCPCH

AICH access

slots 0 1 1282 1175 964 13103 14 0 1 2 75 643

5120

chips

Preamble

5120 chips

Preamble

AS # i

4096 chips

preamble-to-preamble

distance p-p

UE point of view

PRACH

access slots

AICH

access slots

Message

part

preamble-to-message

distance p-m

Acquisition

Indication

preamble-to-AI

distance p-a

(distances depend on AICH_Transmission_Timing )

AS # i

Random Access Timing

Page 49: 02 RN31552EN10GLA0 the Physical Layer

86 © Nokia Siemens Networks RN31552EN10GLN0

SFN mod 8 of thecorresponding

P-CCPCH frame

0

1

2

3

4

5

6

7

0

12

9

6

3

1

13

10

7

4

2

14

11

8

5

3

0

12

9

6

4

1

13

10

7

5

2

14

11

8

6

3

0

12

9

7

4

1

13

10

8

5

2

14

11

9

6

3

0

12

10

7

4

1

13

Sub-channel number

1 2 3 4 5 6 7 8 9 10 11

11

8

5

2

14

0

(cited from TS 25.214 V5.11.0, chap. 6.1.1)

Node B

BCCH (SIB 5, SIB 7)

UE• ASCs and their PRACH access resources + signatures,• AC mapping into ASCs

PRACH Sub-channels and Access Service Classes (ASC)

Page 50: 02 RN31552EN10GLA0 the Physical Layer

88 © Nokia Siemens Networks RN31552EN10GLN0

Node B

UTRANBCCH

UE RNC

Pi Pi Pi Pi

Preamble Signature (16 different versions)

16 chip

256 repetitions

PRACH Preamble Scrambling Code

• 512 groups à

16 preamble scrambling codes

• Cell‘s primary scrambling codes associated with preamble scrambling code group

• available signatures for random access

• available preamble scrambling codes

• available spreading factor

• available sub-channels• etc.

PRACH Preamble

Page 51: 02 RN31552EN10GLA0 the Physical Layer

90 © Nokia Siemens Networks RN31552EN10GLN0

Slot 0 Slot 1 Slot 2 Slot 14

10 ms Frame

RACH data

L1 control data 8 Pilot bits (sequence depends on slot number) 2 TFCI bits

data

• SF = 256• channelisation code:

CCH,256,16*k+15

, with k = signature number

• SF = 256, 128, 64, or 32• channelisation code:• CCH,SF,SF*k/16

, with k = signature number

Scrambling code = PRACH preamble scrambling code

PRACH Message Part

Page 52: 02 RN31552EN10GLA0 the Physical Layer

92 © Nokia Siemens Networks RN31552EN10GLN0

Preamble_Initial_Power =Primary CPICH TX power– CPICH_RSCP+ UL interference + Required received C/I*

UL interference

at Node B

1st

preamble: power setting

attenuation in the DL

estimated receive levelConstant Value

Pre-

amble

Control

part

Pre-

amble

Pre-

amble

Pp-p

Pp-p

Pp-m

1..8 dB-5..10 dB

# of preambles: 1..64 # of preamble cycles: 1..32

PRACH Power Setting

*NSN: PRACHRequiredReceivedCI

Page 53: 02 RN31552EN10GLA0 the Physical Layer

94 © Nokia Siemens Networks RN31552EN10GLN0

Access Slot 0 Access Slot 1 Access Slot 2 Access Slot 14

20 ms Frame

a0 a1 a2 a29 a30a31

15

0js,sj bAIa

s

AICH signature pattern (fixed)

Acquisition Indicator• +1 if signature s is positively confirmed• -1 if signature s is negatively confirmed• 0 if signature s is not included in the

set of available signatures

Acquisition Indication Channel (AICH)

Page 54: 02 RN31552EN10GLA0 the Physical Layer

95 © Nokia Siemens Networks RN31552EN10GLN0

• In RAN1, Node B L1 shall be able to simultaneously scan 12 RACH sub-channels with 4 signatures per sub-channel from UEs situating up to 'Cell radius' distance from the Node B site.

• 'Cell radius' is the maximum radius of the cell and it is given from the RNC to the Node B. In RAN1, the maximum value for the 'Cell radius' is 20 km.

• WCEL: PRACHRequiredReceivedCI• This UL required received C/I value is used by the UE to calculate the initial output power on

PRACH according to the Open loop power control procedure.• This parameter is part of SIB 5.• [-35 dB..-10 dB]; step 1 dB; default -25 dB

• WCEL: PowerRampStepPRACHPreamble• UE increases the preamble transmission power when no acquisition indicator is received by UE in

AICH channel.• This parameter is part of SIB 5.• [1dB..8dB]; step 1 dB; default: 2 dB

• WCEL: PowerOffsetLastPreamblePrachMessage• The power offset between the last transmitted preamble and the control part of the PRACH

message.• [-5 dB..10 dB]; step 1 dB; default 2dB

• WCEL: PRACH_preamble_retrans• The maximum number of preambles allowed in one preamble ramping cycle, which is part of

SIB5/6.• [1 ... 64]; step 1; default 8.

NSN Parameters Related to the PRACH and AICH

Page 55: 02 RN31552EN10GLA0 the Physical Layer

96 © Nokia Siemens Networks RN31552EN10GLN0

• WCEL: RACH_tx_Max• Maximum number of RACH preamble cycles defines how many times the PRACH pre-amble

ramping procedure can be repeated before UE MAC reports a failure on RACH transmission to higher layers.

• This message is part of SIB5/6.• [1 ... 32]; default 8.

• WCEL: PRACHScramblingCode• The scrambling code for the preamble part and the message part of a PRACH Channel, which is

part of SIB5/6.• [0 ... 15]; default 0.

• WCEL: AllowedPreambleSignatures• The preamble part in a PRACH channel carries one of 16 different orthogonal complex signatures.

NSN Node B restrictions: A maximum of four signatures can be allowed (16 bit field).• [0 ... 61440]; default 15.

• WCEL: AllowedRACHSubChannels• A RACH sub-channel defines a sub-set of the total set of access slots (12 bit field).• [0 ... 4095]; default 4095.

NSN Parameters Related to the PRACH and AICH

Page 56: 02 RN31552EN10GLA0 the Physical Layer

97 © Nokia Siemens Networks RN31552EN10GLN0

• WCEL: PtxAICH• This is the transmission power of one Acquisition Indicator (AI) compared to CPICH power. • This parameter is part of SIB 5.• [-22 ... 5] dB, step 1 dB; default: -8 dB.

• WCEL: AICHTraTime• AICH transmission timing defines the delay between the reception of a PRACH access slot

including a correctly detected preamble and the transmission of the Acquisition Indicator in the AICH.

• 0 ( Delay is 0 AS), 1 ( Delay is 1 AS) ;default 0.

• WCEL: RACH_Tx_NB01min• In case that a negative acknowledgement has been received by UE on AICH a backoff timer

TBO1 is started to determine when the next RACH transmission attempt will be started.• The backoff timer TBO1 is set to an integer number NBO1 of 10 ms time intervals, randomly

drawn within an Interval 0

NB01min

NBO1

NB01max (with uniform distribution).• [0 ... 50]; default: 0.

• WCEL: RACH_Tx_NB01max• [0 ... 50]; default: 50.

NSN Parameters Related to the PRACH and AICH

Page 57: 02 RN31552EN10GLA0 the Physical Layer

98 © Nokia Siemens Networks RN31552EN10GLN0

Summary of RACH procedure1- Decode from BCCH• Available RACH spreading factors• RACH scrambling code number• UE Access Service Class (ASC) info• Signatures and sub-channels for each ASC• Power step, RACH C/I requirement = “Constant”, BS interference level2 – Calculate initial preamble power3 – Calculate available access slots in the next full access slot set and select randomly one of those4 – Select randomly one of the available signatures5 – Transmit preamble in the selected access slot with selected signature6 – Monitor AICH• IF no AICH

– Increase the preamble power– Select next available access slot & Go to 3

• IF negative AICH or max. number of preambles exceeded– Exit RACH procedure

• IF positive AICH– Transmit RACH message with same scrambling code and channelisation code related to

signature

(Adopted from TS 25.214)

Page 58: 02 RN31552EN10GLA0 the Physical Layer

99 © Nokia Siemens Networks RN31552EN10GLN0

Part VI Dedicated Physical Channel Downlink

Page 59: 02 RN31552EN10GLA0 the Physical Layer

101 © Nokia Siemens Networks RN31552EN10GLN0

Slot 0 Slot 1 Slot 2 Slot 14

10 ms Frame

TPC

bits Pilot bits

TFCI

bits

(optional)Data 2 bitsData 1 bits

DPDCHDPDCH DPCCH DPCCH

Radio Frame

0

Radio Frame

1

Radio Frame

2

Radio Frame

71

Superframe = 720 ms

• 17 different slot formats• Compressed mode slot

format for changed SF & changed puncturing

Downlink Dedicated Physical Channel (DPCH)

Page 60: 02 RN31552EN10GLA0 the Physical Layer

103 © Nokia Siemens Networks RN31552EN10GLN0

TS TS

maximum bit rate

TS TS TS

discontinuous transmission with lower bit rate

Multicode usage:

TS TS TS

TS TS TS

DPCH 1

DPCH 2

DPCH 3

Downlink Dedicated Physical Channel (DPCH)

DPCCH

Page 61: 02 RN31552EN10GLA0 the Physical Layer

105 © Nokia Siemens Networks RN31552EN10GLN0

Node B RNC

DCH Data Frame

Iub

UE

Uu

PO1

NBAP: RADIO LINK SETUP REQUEST

TPC

bits Pilot bitsTFCI

bits

(optional) Data 2 bitsData 1 bits

PO3PO2

• Power offsets• TFCS• DL DPCH slot format• FDD DL TPC step

size• ...

P0x: 0..6 dB step size: 0.25 dB

Power Offsets for the DPCH

Page 62: 02 RN31552EN10GLA0 the Physical Layer

107 © Nokia Siemens Networks RN31552EN10GLN0

DPC_MODE = 0

unique TPC command

per TS

DPC_MODE = 1

same TPC over 3 TS,

then new command

two modescell

TPC

TPCest

per

1 TS / 3 TS

Downlink Inner Loop Power Control

Page 63: 02 RN31552EN10GLA0 the Physical Layer

108 © Nokia Siemens Networks RN31552EN10GLN0

UTRAN behaviour

P(k) = P(k -

1) + PTPC (k) + Pbal (k),current

DL powerpower

adjustmentnew

DL powerCorrection term

for RL balancing

toward CPICH

P

time

PTPCPbal

IF

Limited Power Increase Used = 'Not used'

PTPC (k) =+

TPC

, if TPCest

(k) = 1

-

TPC

, if TPCest

(k) = 0

TPC

step size: 0.5, 1, 1.5 or 2 dB

mandatory

Downlink Inner Loop Power Control

Page 64: 02 RN31552EN10GLA0 the Physical Layer

109 © Nokia Siemens Networks RN31552EN10GLN0

UTRAN behaviour

P(k) = P(k -

1) + PTPC (k) + Pbal (k),current

DL powerpower

adjustmentnew

DL powerCorrection term

for RL balancing

toward CPICH

P

time

PTPCPbal

IF

Limited Power Increase Used = 'used'

DL_Power_Averaging_Window_Size

PTPC

Power_ Raise_ Limit

K-1

TPCest

(k) = 1 => PTPC (k) = 0

otherwise as

see preceding

slide

K time

Downlink Inner Loop Power Control

Page 65: 02 RN31552EN10GLA0 the Physical Layer

111 © Nokia Siemens Networks RN31552EN10GLN0

SFN mod 2 = 0 SFN mod 2 = 1

P-CCPCH

AICH access

slots 0 1 1282 1175 964 13103 14 0

SCH

nth

S-CCPCH S-CCPCH,n

kth

S-DPCH DPCH,k

0..38144 (step size 256)

0..38144 (step size 256)

Timing Relationship between Physical Channels

Page 66: 02 RN31552EN10GLA0 the Physical Layer

113 © Nokia Siemens Networks RN31552EN10GLN0

UEcell1

UL DPCH

(e.g. CFN = 12)

T0

=1024chips

DLnom(e.g. CFN = 12)

cell2= target

cell for HO

P-CCPCH2

(e.g. SFN2 = 2555)

earliest multipath

Tm

=

timing difference

range: 0..38399Res.: 1 chip

SRNC

(Frame Offset, Chip Offset)

Relative timing between DL DPCH and P-CCPCHrange: 0..38144res.: 256 chips

Offset between DL DPCH and P-CCPCHrange: 0..38399res.: 1 chip

(Frame Offset) (TM)

Radio Interface Synchronisation

Page 67: 02 RN31552EN10GLA0 the Physical Layer

115 © Nokia Siemens Networks RN31552EN10GLN0

Part VII Dedicated Physical Channel Uplink

Page 68: 02 RN31552EN10GLA0 the Physical Layer

117 © Nokia Siemens Networks RN31552EN10GLN0

Slot 0 Slot 1 Slot 2 Slot 14

10 ms Frame

TPC

bitsPilot bits TFCI bits

(optional)

Data 1 bits

Radio Frame

0

Radio Frame

1

Radio Frame

2

Radio Frame

71

Superframe = 720 ms

DPDCH

DPCCH FBI bits

• 7 different slot formats

• 6 different slot formats• Compressed mode slot

format for changed SF & changed puncturing Feedback Indicator for

• Closed loop mode transmit diversity, &• Site selection diversity transmission (SSDT)

Uplink Dedicated Physical Channels

Page 69: 02 RN31552EN10GLA0 the Physical Layer

119 © Nokia Siemens Networks RN31552EN10GLN0

DPCCH

DPDCH

DPCCH

DPDCH

DPCCH

DPDCH

TTL TTL TTL

UL DPDCH/DPCH Power Difference:

DPCCH

DPDCH

=d

c

=Nominal Power Relation Aj

two methods to determine the gain factors:• signalled for each TFCs• calculation based on reference TFCs

Discontinuous Transmission and Power Offsets

Page 70: 02 RN31552EN10GLA0 the Physical Layer

121 © Nokia Siemens Networks RN31552EN10GLN0

time

SIRest

SIRtarget

TCP = 1

TCP = 1

TCP = 0

TCP = 0 TPC

TPC_cmd

in FDD mode:1500 times per second

UL Inner Loop Power Control

Page 71: 02 RN31552EN10GLA0 the Physical Layer

123 © Nokia Siemens Networks RN31552EN10GLN0

PCA2 PCA1 PCA2

algorithms for processing power control commands TPC_cmd

PCA1

TPC_cmd for each TSTPC_cmd values: +1, -1step size

TPC

: 1dB or 2dB

PCA2

TPC_cmd for 5th

TSTPC_cmd values: +1, 0, -1step size

TPC

: 1dB

UL DPCCH power adjustment: DPCCH

=

TPC

TPC_cmd

km/h0

3

80Rayleigh fading can be compensated

UL Inner Loop Power Control

Note that up to NSN RU 10 only PCA 1 is supported.

Page 72: 02 RN31552EN10GLA0 the Physical Layer

124 © Nokia Siemens Networks RN31552EN10GLN0

Example: reliable transmission

Cell 1Cell 2

Cell 3

TPC1

= 1 TPC3

= 0

TPC3

= 1

TPC_cmd = -1 (Down)

Power Control Algorithm 1

Note that up to NSN RU 10 only PCA 1 is supported.

Page 73: 02 RN31552EN10GLA0 the Physical Layer

125 © Nokia Siemens Networks RN31552EN10GLN0

TPC = 1TPC = 1TPC = 1TPC = 1TPC = 1TPC = 1TPC = 0TPC = 1TPC = 0TPC = 1TPC = 0TPC = 0TPC = 0TPC = 0TPC = 0

TPC_temp00001000000000-1

• if all TPC-values = 1 TPC_temp = +1

• if all TPC-values = 0 TPC_temp = -1

• otherwise TPC_temp = 0

Power Control Algorithm 2 (part 1)

Note that up to NSN RU 10 PCA 2 is not supported.

Page 74: 02 RN31552EN10GLA0 the Physical Layer

126 © Nokia Siemens Networks RN31552EN10GLN0

TPC_temp1 TPC_temp2 TPC_temp3

Example:

N

iiN 1

TPC_temp1N = 3

-1 -0.5 0 0.5 1

TPC_cmd = -1 10

Power Control Algorithm 2 (part 2)

Note that up to RU 10 PCA 2 is not supported.

Page 75: 02 RN31552EN10GLA0 the Physical Layer

129 © Nokia Siemens Networks RN31552EN10GLN0

reception

at UE

trans-

mission

at UE

DPCCH only DPCCH &

DPDCH

0 to 7 frames for power control preamble

DPCCH only DPCCH &

DPDCH

DPCCH_Initial_power = –

CPICH_RSCP + DPCCH_Power_offset

Initial Uplink DCH Transmission

DL Synch & Activation time

0 to 7 frames of

SRB delay

Page 76: 02 RN31552EN10GLA0 the Physical Layer

130 © Nokia Siemens Networks RN31552EN10GLN0

Part VIII HSDPA Physical Channels

Page 77: 02 RN31552EN10GLA0 the Physical Layer

132 © Nokia Siemens Networks RN31552EN10GLN0

Terminal 1 (UE)

Terminal 2

L1 Feedback

L1 Feedback

Data

Data

•Shared DL data channel

•Fast link adaptation, scheduling and L-1 error correction done in BTS

•1 – 15 codes (SF=16)

•QPSK or 16QAM modulation

•User may be time and/or code multiplexed.

• Channel quality information

• Error correction Ack/Nack

HSDPA – General principle

Page 78: 02 RN31552EN10GLA0 the Physical Layer

134 © Nokia Siemens Networks RN31552EN10GLN0

HSDPA features

Fast Link Adaptation: Modulation

and Coding

is adapted every 2 ms (1 TTI)

during the session to the radio link quality. This ensures highest possible data rates to end-users.

Fast Packet Scheduling:The NodeB is responsible for resource allocation to HSDPA packet data users. Resource allocation is performed every TTI = 2 ms. For resource allocation, the users radio link quality may be taken into account.Fast Packet Scheduling improves the spectrum efficiency.

Fast H-ARQ: Data are retransmitted by BTS. UE

acknowledges (L1) and performs soft combination

of initial transmission & retransmissions. This provides reliable, fast and

efficient data transmission.

HSDPA

Fast LinkAdaptation Fast

H-ARQ

Fast

Packet

scheduling

Interaction of MAC-hs and Physical Layer

Page 79: 02 RN31552EN10GLA0 the Physical Layer

135 © Nokia Siemens Networks RN31552EN10GLN0

HSDPA Peak Bit Rates

Coding rateCoding rate

QPSKQPSK

Coding rateCoding rate

1/41/4

2/42/4

3/43/4

5 codes5 codes 10 codes10 codes 15 codes15 codes

600 kbps600 kbps 1.2 Mbps1.2 Mbps 1.8 Mbps1.8 Mbps

1.2 Mbps1.2 Mbps 2.4 Mbps2.4 Mbps 3.6 Mbps3.6 Mbps

1.8 Mbps1.8 Mbps 3.6 Mbps3.6 Mbps 5.4 Mbps5.4 Mbps

16QAM16QAM

2/42/4

3/43/4

4/44/4

2.4 Mbps2.4 Mbps 4.8 Mbps4.8 Mbps 7.2 Mbps7.2 Mbps

3.6 Mbps3.6 Mbps 7.2 Mbps7.2 Mbps 10.7 Mbps10.7 Mbps

4.8 Mbps4.8 Mbps 9.6 Mbps9.6 Mbps 14.4 Mbps14.4 Mbps

RAS06 allows allocation of up to 15 Codes; 14.4 Mbps total;up to 3 simultaneous user; max. 10 Mbps/user

RU10 allows max. 14.4 Mbps/user

Page 80: 02 RN31552EN10GLA0 the Physical Layer

136 © Nokia Siemens Networks RN31552EN10GLN0

UE

BTS

Ass

ocia

ted

DP

CH

Ass

ocia

ted

DP

CH

1-15

x H

S-

PD

SC

H

1-4

x H

S-S

CC

H

HS

-DP

CC

H

DL CHANNELSHS-PDSCH: High-Speed Physical

Downlink Shared ChannelHS-SCCH: High-Speed Shared

Control ChannelF-DPCH: Fractional Dedicated

Physical ChannelAssociated DPCH, Dedicated

Physical Channel.

UL CHANNELSAssociated DPCH, Dedicated

Physical ChannelHS-DPCCH: High-Speed

Dedicated Physical Control Channel

Rel99 DCH

Physical Channels for One HSDPA UE

F-D

PC

H

Page 81: 02 RN31552EN10GLA0 the Physical Layer

137 © Nokia Siemens Networks RN31552EN10GLN0

HSDPA DL physical channels

HS-PDSCH: High-Speed Physical Downlink Shared Channel• Transfers actual HSDPA data of HS-DSCH transport channel.• 1-15 code channels.• QPSK or 16QAM modulation.• Divided into 2ms TTIs• Fixed SF16• Doesn’t have power control

HS-SCCH: High-Speed Shared Control Channel• Includes information to tell the UE how to

decode the next HS-PDSCH frame• Fixed SF128• Shares downlink power with the HS-PDSCH• More than one HS-SCCH required when code

multiplexing is used• Power can be controlled by node B

(proprietary algorithms)

Field Number of uncoded bits

Channelisation code set information 7 bits

Modulation scheme information 1 bit

Transport block size information 6 bits

Hybrid ARQ process information 3 bits

Redundancy and constellation version 3 bits

New data indicator 1 bit

UE identity 16 bits

Page 82: 02 RN31552EN10GLA0 the Physical Layer

138 © Nokia Siemens Networks RN31552EN10GLN0

HSDPA DL physical channels

F-DPCH: Fractional Dedicated Physical Channel• The F-DPCH carries control information generated at layer 1 (TPC commands).• It is a special case of DL DPCCH• fixed SF = 256• Frame structure of the F-DPCH: each 10 ms frame is split into 15 slots (each of 2/3 ms),

corresponding to 1 power-control period• Up to 10 users can share the same F-DPCH to receive power control information (per

user: 2 F-DPCH bits/slot = 1.5 ksymb/s).• Introduced in Rel. 6

for situations where only packet services are active in the DL others than the Signalling Radio Bearer SRB

• Should be used in case of low data rate packet services handled by HSDPA & HSUPA, where the associated DPCH causes to much (power) overhead and code consumption

Associated DPCH, Dedicated Physical Channel• Transfers L3 signalling (Signalling Radio Bearer (SRB)) information e.g. RRC

measurement control messages• Power control commands for associated UL DCH• DPCH needed for each HSDPA UE.

Page 83: 02 RN31552EN10GLA0 the Physical Layer

139 © Nokia Siemens Networks RN31552EN10GLN0

HSDPA UL physical channelsHS-DPCCH: High-Speed Dedicated Physical Control Channel• MAC-hs Ack/Nack information (send when data received).• Channel Quality Information, CQI reports (send in every 4ms)• SF 256• Power control relative to DPCH• No SHO

Associated DPCH, Dedicated Physical Channel• DPCH needed for each HSDPA UE.• Transfers signalling• Also transfers uplink data 64, 128, 384kbps, e.g. TCP acks and UL data transmission

Page 84: 02 RN31552EN10GLA0 the Physical Layer

140 © Nokia Siemens Networks RN31552EN10GLN0

Physical channel structure – Time multiplexing

3GPP enables time and code multiplexing.

Picture presents time multiplexing• One HS-SCCH

required per cell• Codes can be

allocated only to one user at a time

U E1

U E1

U E1

U E2

U E2

U E2

U E1 HS-PDSCH #2

U E1

U E1

U E1

U E2

U E2

U E2

U E3

U E3

U E3

U E1 HS-PDSCH #1

U E1

U E1

U E1

U E1 HS-PDSCH #3

UE #1

UE #2

UE #3

1 radio frame (15 slots, total 10 ms)

2 ms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Subframe #1 Subframe #2 Subframe #3 Subframe #4 Subframe #5

U E1

U E1

U E1

U E2

U E2

U E2

U E3

U E3

U E3

U E1 HS-SCCH

User data on HS-DSCH

L1 feedback HS-DPCCH

3 slots

2 slots

L1 feedback HS-DPCCH

L1 feedback HS-DPCCH

Page 85: 02 RN31552EN10GLA0 the Physical Layer

141 © Nokia Siemens Networks RN31552EN10GLN0

Code MultiplexingWith Code Multiplexing, multiple UEs can be scheduled during one TTI.Multiple HS-SCCH channels• One for each simultaneously

receiving UE.• HS-SCCH power overhead.HS-PDSCH codes divided for different transport blocks.• Multiple simultaneous transport

blocks to one UE not possible.Codes can be allocated to multiple users at same time• Important when cell supports more

codes than UEs do. For example 10 codes per cell, UE category 6.

HS-PDSCHHS-PDSCHHS-PDSCHHS-PDSCH

HS-PDSCH

cat 6

HS-PDSCHHS-PDSCHHS-PDSCHHS-PDSCH

HS-PDSCH

HS-SCCHHS-SCCH

cat 6 cat 6 cat 6cat 8

Page 86: 02 RN31552EN10GLA0 the Physical Layer

142 © Nokia Siemens Networks RN31552EN10GLN0

HS-SCCH

HS-PDSCH

HS-DPCCH

2 slots 3 slots

Node B

UE

P-CCPCH

Uplink DPCH

TTX_diff

Downlink DPCH

Tprop + 0.4 slots (1024 chips)

Tprop + 7.5 slots

m x 0.1 slots = TTX_diff + 10.1 slots

Unit = chips 2560 chips = slot 3 slots = (HSDPA) subframe 15 slots = frame

Timing of HSDPA Physical Channels

Page 87: 02 RN31552EN10GLA0 the Physical Layer

143 © Nokia Siemens Networks RN31552EN10GLN0

SF = 128

SF = 256

SF = 64

SF = 32

SF = 8

SF = 16

SF = 4

SF = 2

SF = 1

Codes for the cell common channels

Code for oneHS-SCCH

Codes for 5HS-PDSCH's

•166 codes @ SF=256 available for the associated DCHs and non-HSDPA uses

Downlink Code Allocation example

Page 88: 02 RN31552EN10GLA0 the Physical Layer

145 © Nokia Siemens Networks RN31552EN10GLN0

Fast Link Adaptation in HSDPA

0 20 40 60 80 100 120 140 160-202468

10121416

Time [number of TTIs]

QPSK1/4

QPSK2/4

QPSK3/4

16QAM2/4

16QAM3/4

Inst

anta

neou

s EsN

o [d

B]C/I received by

UE

Link adaptation

mode

C/I varies with fading

BTS adjusts link adaptation mode with a few ms delay based on channel quality

reports from the UE

Page 89: 02 RN31552EN10GLA0 the Physical Layer

146 © Nokia Siemens Networks RN31552EN10GLN0

QPSK2 bits / symbol =

480 kbit/s/HS-PDSCH = max. 7.2 Mbit/s

16QAM4 bits / symbol =

960 kbit/s/HS-PDSCH = max. 14.4 Mbit/s

1011 1001

10001010

0001 0011

00100000

0100 0110

01110101

1110 1100

11011111

Q

I

10 00

0111

Q

I

Link adaptation: Modulation

3GPP Rel. 7

introduces DL 64QAM

support for HS-PDSCH

Page 90: 02 RN31552EN10GLA0 the Physical Layer

148 © Nokia Siemens Networks RN31552EN10GLN0

UE HS-DSCH physical layer categoriesHS-DSCH category

Maximum number of HS-DSCH

codes received

Minimu m inter-

TTI interval

Maximum number of bits of an HS-DSCH

transport block received within an HS-DSCH TTI

ARQ Type at

maximum data rate

Total number of

soft channel

bits Category 1

5 3 7298 Soft 19200

Category 2

5 3 7298 IR 28800

Category 3

5 2 7298 Soft 28800

Category 4

5 2 7298 IR 38400

Category 5

5 1 7298 Soft 57600

Category 6

5 1 7298 IR 67200

Category 7

10 1 14411 Soft 115200

Category 8

10 1 14411 IR 134400

Category 9

15 1 20251 Soft 172800

Category 10

15 1 27952 IR 172800

Category 5 2 3630 Soft 14400

TS 25.306

QPSKonly

QPSKor

16QAM

• 3GPP Rel. 7 introduces Categories 13 – 18 for 64QAM or MIMO support• 3GPP Rel. 8 introduces Categories 19 & 20 for 64QAM & MIMO support

Page 91: 02 RN31552EN10GLA0 the Physical Layer

150 © Nokia Siemens Networks RN31552EN10GLN0

UE

BTS

Ass

ocia

ted

DP

CH

Ass

ocia

ted

DP

CH

1-15

x H

S-

PD

SC

H

1-4

x H

S-S

CC

H

HS

-DP

CC

HRel99 DCH

Channel quality indication (CQI) from HSDPA UEUE reports the channel conditions to the base station via the uplink channel CQI field on the HS- DPCCH

UE estimates which AMC format CQI (0…30) will provide transport block error probability < 10 % on HS-DSCH

WBTS uses CQI as one input when defining the AMC format used on the HS-PDSCH• Transport Block Size• Number of HS-PDSCH (codes)• Modulation• Incremental redundancy

Page 92: 02 RN31552EN10GLA0 the Physical Layer

152 © Nokia Siemens Networks RN31552EN10GLN0

MAC-hs

UE: RNC:

HS-SCCH

HS-DSCHHS-DPCCH

Page 93: 02 RN31552EN10GLA0 the Physical Layer

157 © Nokia Siemens Networks RN31552EN10GLN0

Server RNC Node-B

UE

RLC retransmissions

TCP retransmissions

MAC-hs Layer-1retransmissions

Retransmissions in HSDPA

Page 94: 02 RN31552EN10GLA0 the Physical Layer

159 © Nokia Siemens Networks RN31552EN10GLN0

SystematicParity 1Parity 2

Turbo Encoder

Rate Matching (Puncturing)

SystematicParity 1Parity 2

Chase Combining (at Receiver)

SystematicParity 1Parity 2

Original transmission Retransmission

HSDPA L1 Retransmissions : Chase Combining

Page 95: 02 RN31552EN10GLA0 the Physical Layer

160 © Nokia Siemens Networks RN31552EN10GLN0

SystematicParity 1Parity 2

Turbo Encoder

Rate Matching (Puncturing)

SystematicParity 1Parity 2

Incremental Redundancy Combining

SystematicParity 1Parity 2

Original transmission Retransmission

HSDPA L1 Retransmissions : Incremental Redundancy

Page 96: 02 RN31552EN10GLA0 the Physical Layer

161 © Nokia Siemens Networks RN31552EN10GLN0

Power control on HSDPA channels

Associated UL and DL DPCH utilise normal closed loop power controlDL HS-PDSCH• Fixed power or variable power e.g. according to load conditionsDL HS-SCCH• 3GPP specifications do not explicitly specify any closed loop PC modes for the HS-SCCH• The Node-B must rely on feedback information from the UE related to the reception

quality of other channel types, such as:– Power control commands for the associated DPCH– CQI reports for HS-DSCH– ACK/NACK feedback or DTX in uplink HS-DPCCH

UL HS-DPCCH• Based on associated DPCH power control with power offsets• The power offset parameters [ACK ; NACK ; CQI ] are controlled by the RNC and

reported to the UE using higher layer signallingHS-DPCCH

DPCCH

ACK; NACK CQI CQI

Ack/Nack CQI report

Page 97: 02 RN31552EN10GLA0 the Physical Layer

162 © Nokia Siemens Networks RN31552EN10GLN0

Part IX HSUPA Physical Channels

Page 98: 02 RN31552EN10GLA0 the Physical Layer

164 © Nokia Siemens Networks RN31552EN10GLN0

UE

4-L1 Feedback

2-allocation of allowed PWR (resources)

• Channel quality Information

• Error correction Ack/Nack

HSUPA – General principle

3-Data tx

1-Scheduling request to Node B

5-More or less PWR is granted if

needed

• E-DCH• Node B controlled scheduling• HARQ• SF=256-2• Multi-Code operation• QPSK modulation

only Dual-branch BPSK on I- & Q-branch

• Fast Link Adaptation

(Adaptive Coding), no enhanced/ adaptive modulation in Rel. 6• SHO supported

Page 99: 02 RN31552EN10GLA0 the Physical Layer

166 © Nokia Siemens Networks RN31552EN10GLN0

HSUPA features

Fast Link Adaptation:HSUPA (Rel. 6): The coding is adapted dynamically every TTI (2 ms / 10 ms)

by the UE to radio link quality. Modulation is fixed to QPSK in Rel. 6. Rel. 7 offers adaptation of the modulation (QPSK/16QAM), too.Fast Link Adaptation improves the spectrum efficiency significant.

Fast Packet Scheduling:NodeB schedules UL resource allocation (every TTI = 2/10ms).

Fast H-ARQ: UE and Node B are responsible for acknowledged PS data transmission. Data retransmission is handled by UE. NodeB performs soft combining of original and Re-transmissions to enhance efficiency. This provides fast & efficient error correction.

HSUPA

Fast LinkAdaptation Fast

H-ARQ

Fast Packet

Scheduling

Physical Layer in Interaction with MAC-e

Page 100: 02 RN31552EN10GLA0 the Physical Layer

167 © Nokia Siemens Networks RN31552EN10GLN0

HSUPA Peak Bit Rates

Coding rateCoding rate

1/41/4

3/43/4

4/44/4

1code x SF41code x SF4 2codes x SF42codes x SF4 2codes x SF22codes x SF22codes x SF2

+ 2codes x SF4

2codes x SF2 +

2codes x SF4

480 kbps480 kbps 960 kbps960 kbps 1.92 Mbps1.92 Mbps 2.88 Mbps2.88 Mbps

720 kbps720 kbps 1.46 Mbps1.46 Mbps 2.88 Mbps2.88 Mbps 4.32 Mbps4.32 Mbps

960 kbps960 kbps 1.92 Mbps1.92 Mbps 3.84 Mbps3.84 Mbps 5.76 Mbps5.76 Mbps

NSN RU10 (WBTS5.0) gives support to UE categories 1-7 up to 1.92 (about 2) Mbps (2 x SF2) per UE (only 10 ms TTI, ¼

coding)

Page 101: 02 RN31552EN10GLA0 the Physical Layer

168 © Nokia Siemens Networks RN31552EN10GLN0

UE

BTS

Ass

ocia

ted

DP

CH

Ass

ocia

ted

DP

CH

1-4

x E

-DP

DC

H

E-D

PC

CH

E-R

GC

H

DL CHANNELSE-AGCH: E-DCH Absolute Grant

ChannelE-RGCH: E-DCH Relative Grant

ChannelE-HICH: E-DCH Hybrid ARQ Indicator

ChannelAssociated DPCH, Dedicated Physical

Channel.UL CHANNELSE-DPDCH: Enhanced Dedicated

Physical Data ChannelE-DPCCH: Enhanced Dedicated

Physical Control ChannelAssociated DPCH, Dedicated Physical

Channel

Rel99 DCH

Physical Channels for One HSUPA UE

E-H

ICH

E-A

GC

H

Page 102: 02 RN31552EN10GLA0 the Physical Layer

169 © Nokia Siemens Networks RN31552EN10GLN0

HSUPA UL physical channelsE-DPDCH: Enhanced Dedicated Physical Data Channel• carries UL packet data (E-DCH)• up to 4 E-DPDCHs for 1 Radio Link• SF = 256 – 2 (BPSK)• pure user data & CRC • CRC size: 24 bit (1 CRC/TTI)• TTI = 2 / 10 ms• UE receives resource allocation via Grant Channels• managed by MAC-e/-es• Error Protection: Turbo Coding 1/3• Soft/Softer Handover support

E-DPCCH: Enhanced Dedicated Physical Control Channel• transmits control information associated with the E-DCH• 0 or 1 E-DPCCH for 1 Radio Link• SF = 256

Associated DPCH, Dedicated Physical Data Channel• DPCH needed for each HSUPA UE.• Transfers signalling• Also transfers uplink data 64, 128, 384kbps, e.g. TCP acks and UL data transmission

Page 103: 02 RN31552EN10GLA0 the Physical Layer

170 © Nokia Siemens Networks RN31552EN10GLN0

E-DCH: E-DPDCH & E-DPCCH

I

j

cd,1 d

I+jQ

DPDCH1

Q

cd,3 d

DPDCH3

cd,5 d

DPDCH5

cd,2 d

DPDCH2

cd,4 d

cc c

DPCCH

Sdpch

DPDCH4

cd,6 d

DPDCH6

Rel. `99 New in Rel. 6 for HSUPA:E-DPDCH & E-DPCCH

E-DPDCH:used to carry the E-DCH

transport channel.There may be 0, 1, 2

or 4 E-DPDCH

on each radio link.

E-DPCCH:used to transmit control information associated with the E-DCH.

Configurati on #

DPDCH HS- DPCCH

E-

DPDCH

E-

DPCCH

1 6 1 - -

2 1 1 2 1

3 - 1 4 1

Maximum number of simultaneous UL DCHs

Page 104: 02 RN31552EN10GLA0 the Physical Layer

171 © Nokia Siemens Networks RN31552EN10GLN0

E-DPDCH : SF-Variation & Multi-Code Operation

CC1,0 = (1)

CC2,1 = (1,-1)

CC2,0 = (1,1)

CC4,0 = (1,1,1,1)

CC4,1 = (1,1,-1,-1)

CC4,2 = (1,-1,1,-1)

CC4,3 = (1,-1,-1,1)

CC64,0

CC64,1

CC64,2

CC64,63

CC64,62

•••

• • •

SF = 1 SF = 2 SF = 4 SF = 64SF = 8

NDPDCH

E-

DPDCHkCCSF,k

0

E-DPDCH1

CCSF,SF/4 if SF

4CC2,1 if SF = 2

E-DPDCH2CC4,1 if SF = 4CC2,1 if SF = 2

E-DPDCH3

E-DPDCH4CC4,1

1E-DPDCH1 CCSF,SF/2

E-DPDCH2CC4,2 if SF = 4CC2 1

if SF = 2

E-DPDCH: SF = 256 -

2SF = 2

1920

kbit/s

Multi-Code operation:up to 2 x SF2

+ 2 x SF4 up to 5.76 Mbps

Page 105: 02 RN31552EN10GLA0 the Physical Layer

172 © Nokia Siemens Networks RN31552EN10GLN0

E-DPDCH & E-DPCCH frame structure and content

E-DPDCH: Data only (+ 1 CRC/TTI);SF = 256 – 2; Rchannel = 15 – 1920 kbps

Ndata = 10 x 2k+2 bit (K = 0..5)

E-DPCCH: L1 control data; SF = 256; 10 bit

1 Slot = 2560 chip = 2/3 ms

Slot #0 Slot #1 Slot #2 Slot #i Slot #14

1 subframe = 2 ms

1 radio frame, Tframe

= 10 ms

k SFChannel Bit Rate

[kbps]

Bit/ Fram

e

Bit/ Subfram

e

Bit/Slo t

Ndata

0 64 60 600 120 401 32 120 1200 240 802 16 240 2400 480 1603 8 480 4800 960 3204 4 960 9600 1920 640

5 2 1920 1920 0 3840 1280

E-DPCCH content:• E-TFCI information (7 bit)

indicates E-DCH Transport Block Size; i.e. at given TTI (TS 25.321; Annex B)• Retransmission Sequence Number RSN (2 bit)

Value = 0 / 1 / 2 / 3 for:Initial Transmission, 1st / 2nd / further Retransmission

• „Happy" bit (1 bit)indicating if UE could use more resources or notHappy 1Not happy 0

Page 106: 02 RN31552EN10GLA0 the Physical Layer

174 © Nokia Siemens Networks RN31552EN10GLN0

HSUPA DL physical channels

E-RGCHE-DCH Relative Grant Channel

carries DL relative grants for UL E-DCH;complementary to E-AGCHcontains: relative Grants („UP“, „HOLD“, „DOWN“) &

UE-IdentityE-DCH relative grant transmitted 1 TTI (2/10 ms)SF = 128 (60 kbps; 40 bit/Slot)

UE

E-RGCHE-RGCH

E-AGCHE-AGCH

E-AGCHE-DCH Absolute Grant Channel

carries DL absolute grants

for UL E-DCHcontains: UE-Identity (E-RNTI) & max. UE power ratioE-DCH absolute grant transmitted over 1 TTI (2/10 ms)SF = 256 (30 kbps; 20 bit/Slot)

E-DCH Radio Network Temporary Identifier:allocated by S-RNC for E-DCH user per Cell

E-DPDCHE-DPDCH

E-DCH

transmission:after E-AGCHafter E-RGCHNon-scheduled transmission

NodeB

Page 107: 02 RN31552EN10GLA0 the Physical Layer

175 © Nokia Siemens Networks RN31552EN10GLN0

HSUPA DL physical channels

UE

E-HICHE-DCH Hybrid ARQ Indicator Channel

carries H-ARQ acknowledgement indicator for UL E-DCHcontains ACK/NACK

(+1; -1) & UE-IdentityE-DCH relative grant transmitted 1 TTI (2/10 ms)SF = 128 (60 kbps; 40 bit/Slot)

E-HICH (ACK/NACK)

E-HICH (ACK/NACK)

E-DPDCHE-DPDCH

NodeB E-DPDCH (Re-transmission)

E-DPDCH (Re-transmission)

Page 108: 02 RN31552EN10GLA0 the Physical Layer

176 © Nokia Siemens Networks RN31552EN10GLN0

HSUPA DL physical channelsE-AGCH: E-DCH Absolute Grant Channel• carries DL absolute grants for UL E-DCH• contains: UE-Identity (E-RNTI) & max. UE power ratio• E-DCH absolute grant transmitted over 1 TTI (2/10 ms)• SF = 256 (30 kbps; 20 bit/Slot)

E-RGCH: E-DCH Relative Grant Channel• carries DL relative grants for UL E-DCH;• complementary to E-AGCH• contains: relative Grants („UP“, „HOLD“, „DOWN“) & UE-Identity• E-DCH relative grant transmitted 1 TTI (2/10 ms)• SF = 128 (60 kbps; 40 bit/Slot)

E-HICH: E-DCH Hybrid ARQ Indicator Channel• carries H-ARQ acknowledgement indicator for UL E-DCH• contains ACK/NACK (+1; -1) & UE-Identity• E-DCH relative grant transmitted 1 TTI (2/10 ms)• SF = 128 (60 kbps; 40 bit/Slot)

Associated DPCH, Dedicated Physical Channel• Transfers L3 signalling (Signalling Radio Bearer (SRB)) information e.g. RRC measurement control messages• Power control commands for associated UL DCH• DPCH needed for each HSUPA UE.

Page 109: 02 RN31552EN10GLA0 the Physical Layer

178 © Nokia Siemens Networks RN31552EN10GLN0

Adaptive Coding in HSUPA

NodeB

UE

1/42/43/44/4 UE

• HSUPA adapts the Coding to the current Radio Link Quality• HSUPA varies the effective Coding between 1/4 – 1(4/4)

Note that support for 4/4 coding is optionally given by UE and not supported in NSN RU 10!

Page 110: 02 RN31552EN10GLA0 the Physical Layer

179 © Nokia Siemens Networks RN31552EN10GLN0

Modulation in HSUPA

“Dual-Branch BPSK1-Bit Keying

-1 1

(Q)

I

• Rel. 6 defines only QPSK

(“Dual-branch BPSK“) as modulation method for HSUPA.• 16QAM

Modulation (“Dual-branch QPSK”) has been regarded as to complex for initial HSUPA• (16 QAM = Dual-branch QPSK is defined in Release 7)• no Adaptive Modulation takes place in Rel. 6; Adaptive Modulation with QPSK/16QAM in Rel. 7

QPSK:2-Bit Keying

16 QAM64QAM

on both Code Trees in the UE

Page 111: 02 RN31552EN10GLA0 the Physical Layer

181 © Nokia Siemens Networks RN31552EN10GLN0

FDD E-DCH physical layer categories

E-

DCHCategory

max. E-DCHCodes

min. SF

2 & 10 ms

TTI E-DCH

support

max. #. of E-DCH Bits* / 10 ms TTI

max. # of E-DCH Bits*

/ 2 ms

TTI

Referencecombination

Class

1 1 4 10 ms only 7110 - 0.73 Mbps

2 2 4 10 & 2 ms 14484 2798 1.46 Mbps3 2 4 10 ms only 14484 - 1.46 Mbps

4 2 2 10 & 2 ms 20000 5772 2.92 Mbps5 2 2 10 ms only 20000 - 2.0 Mbps

6 4 2 10 & 2 ms 20000 11484 5.76 Mbps7* 4 2 10 & 2 ms 20000 22996 11.52 Mbps

Extracted from TS 25.306: UE Radio Access Capabilities7* category 7 is defined in 3GPP Rel 7 and supports QPSK and 16 QAM in UplinkNSN RU10 (WBTS5.0) gives support to UE categories 1-7 up to 2 Mbps per UE (only 10 ms TTI)

Page 112: 02 RN31552EN10GLA0 the Physical Layer

183 © Nokia Siemens Networks RN31552EN10GLN0

MAC Architecture: UE SideMAC-es/MAC-e

are handling E-DCH specific functions• Split between MAC-es & MAC-e in the UE is not detailed• comprises following entities:

• H-ARQ: buffering MAC-e payloads & re-transmitting them • Multiplexing: concatenating multiple MAC-d PDUs MAC-es PDUs & multiplex 1 / multiple MAC-es PDUs 1 MAC-e PDU • E-TFC selection: Enhanced Transport Format Combination selection according to scheduling information (Relative & Absolute Grants) received from UTRAN via L1

FACH RACH

DCCH DTCHDTCH

DSCH DCH DCH

MAC Control

CPCH

CTCHBCCH CCCHPCCH

PCH FACH DSCHHS-DSCH

associatedDL Signalling

E-DCHassociated

UL Signallingassociated

DL Signallingassociated

UL Signalling

MAC-d

MAC-c/shMAC-hsMAC-es/MAC-e

Page 113: 02 RN31552EN10GLA0 the Physical Layer

184 © Nokia Siemens Networks RN31552EN10GLN0

MAC Architecture: UTRAN side1 MAC-e entity in Node B

for each UE &1 E-DCH

scheduler function handle HSUPA specific functions in Node B • E-DCH Scheduling: manages E-DCH cell re-

sources between UEs; implementation proprietary • E-DCH Control: receives scheduling requests &

transmits scheduling assignments. • De-multiplexing: de-multiplexing MAC-e PDUs • H-ARQ: generating ACKs/NACKs

FACH RACH

DCCH DTCHDTCH

DSCH

MAC Control

Iur orlocal

MAC Control

DCH DCHCPCH

CCCH CTCHBCCHPCCH

PCH

MAC Control

Configurationwith MAC-c/sh

associatedDL Signalling

MAC ControlMAC Control

MAC-e MAC-hs MAC-c/sh

MAC-d

MAC-es

associatedUL Signalling

E-DCH associatedDL Signalling

associatedUL Signalling

HS-DSCH Iub

Configurationwithout MAC-c/sh

Configurationwith MAC-c/sh

NodeB

• 1 MAC-es entity

for each UE in S-RNC• Reordering: reorders received MAC-es

PDUs according to the received TSN • Macro diversity selection: for SHO

(Softer HO in Node-B). delivers received MAC-es PDUs from each Node B of E-DCH AS reordering function

• Disassembly: Remove MAC-es header, extract MAC-d PDU’s & deliver MAC-d

RNC

Page 114: 02 RN31552EN10GLA0 the Physical Layer

185 © Nokia Siemens Networks RN31552EN10GLN0

HSUPA Fast Packet Scheduling

HSUPA (Rel. 6) Fast Packet Scheduling: • Node B controlled• resources allocated on Scheduling Request• short TTI = 2 / 10 ms• Scheduling Decision on basis of actual physical layer load (available in Node B)

up-to date / Fast scheduling decision high UL resource efficiency

higher Load Target (closer to Overload Threshold) possible high UL resource efficiency

L1 signalling overhead

HSUPA (Rel. 6) Fast Packet Scheduling: • Node B controlled• resources allocated on Scheduling Request• short TTI = 2 / 10 ms• Scheduling Decision on basis of actual physical layer load (available in Node B) up-to date / Fast scheduling decision high UL resource efficiency higher Load Target (closer to Overload Threshold) possible

high UL resource efficiency

L1 signalling overhead

Scheduling Request(buffer occupation,...)

UE

IubNode

B

Scheduling Grants(max. amount of

UL resources to be used)

E-DCHdata transmission

E-DCHdata transmission

S-RNC

Page 115: 02 RN31552EN10GLA0 the Physical Layer

186 © Nokia Siemens Networks RN31552EN10GLN0

HSUPA Link Adaptation

SchedulingRequest

UENode

B

SchedulingGrants

E-DCH(TTI = 2 / 10 ms)

E-DCH(TTI = 2 / 10 ms)

MAC-e (UE) decides E-DCH Link Adaptation (TFC; effective Coding)on basis of:• Channel quality estimates (CPICH Ec/Io)• Every TTI (2/10 ms)

Rel. 99:Fixed

Turbo Coding 1/3

Rel. 99:Fixed

Turbo Coding 1/3

Rel. 6 HSUPA:dynamic Link Adaptation

effective Coding 1/4 - 4/4

higher UL data rates

higher resource efficiency

Rel. 6 HSUPA:dynamic Link Adaptation

effective Coding 1/4 - 4/4

higher UL data rates higher resource efficiency

Page 116: 02 RN31552EN10GLA0 the Physical Layer

187 © Nokia Siemens Networks RN31552EN10GLN0

HSUPA Fast H-ARQ

HSUPA:

Fast H-ARQ with UL E-DCH• Node B (MAC-e) controlled• SAW* H-ARQ protocol • based on synchronous DL (L1) ACK/NACK• Retransmission strategies:

Incremental Redundancy & Chase Combining• 1st

Retransmission

40 / 16

ms

(TTI = 10 / 2 ms)• limited number of Retransmissions*• lower probability for RLC Retransmission• Support of Soft & Softer Handover

HSUPA:

Fast H-ARQ with UL E-DCH• Node B (MAC-e) controlled• SAW* H-ARQ protocol • based on synchronous DL (L1) ACK/NACK• Retransmission strategies:

Incremental Redundancy & Chase Combining• 1st

Retransmission

40 / 16

ms

(TTI = 10 / 2 ms)• limited number of Retransmissions*• lower probability for RLC Retransmission• Support of Soft & Softer Handover

UE

Iub

NodeB

E-DCH PacketsE-DCH Packets

L1 ACK/NACKL1 ACK/NACK

RetransmissionRetransmission

MAC-e controls L1 H-ARQ:• storing & retransmitting payload• packet combining (IR & CC)

MAC-e controls L1 H-ARQ:• storing & retransmitting payload• packet combining (IR & CC)

correctly receivedpackets

correctly receivedpackets

Short delay times(support of QoS services)

less Iub/Iur traffic

Short delay times(support of QoS services)

less Iub/Iur traffic

IR: Incremental RedundancyCC: Chase CombiningHARQ: Hybrid Automatic Repeat RequestSAW: Stop-and-Wait* HARQ profile - max. number of

transmissions attribute

RNC

Page 117: 02 RN31552EN10GLA0 the Physical Layer

189 © Nokia Siemens Networks RN31552EN10GLN0

HSUPA Soft Handover

Sectorcells

CN

S-RNC:select E-DCHdata (MAC-es)& deliver to CN

S-RNC:select E-DCHdata (MAC-es)& deliver to CN

E-DCH Active Set:• set of cells carrying the

E-DCH for 1 UE.• can be identical / a

subset of DCH AS• is decided by the S-RNC

E-DCH Active Set:• set of cells carrying the

E-DCH for 1 UE.• can be identical / a

subset of DCH AS• is decided by the S-RNC

Softer Handover: • UE connected to cells of same

Node B (same MAC-e entity)• combining Node B internal• no extra Iub capacity needed

Softer Handover: • UE connected to cells of same

Node B (same MAC-e entity)• combining Node B internal• no extra Iub capacity needed

Iu

IubIub

Iub

Soft Handover:UE connected to UTRAN

via different Node Bs

Soft Handover:UE connected to UTRAN

via different Node Bs

Node B

Node B

Node B

RNC

UE

Node B

Iub

RNC

E-DCHAS

E-DCHAS

SHO Gains:full Coveragefor HSUPA

Page 118: 02 RN31552EN10GLA0 the Physical Layer

191 © Nokia Siemens Networks RN31552EN10GLN0

HSUPA Power Control

Configuration #i

DPDC

H

HS-

DPCCH

E-DPDCH E-DPCCH

1 6 1 - -2 1 1 2 13 - 1 4 1

TS 25.14;5.1.2

NodeB

DPDCH(s)

DPDCH(s)DL DPCCH

UL DPCCH

E-DPDCH(s)

E-DPDCH(s)E-DPCCH

UE

UL DCH max configurations for Rel

99, HSDPA & HSUPA

DPCCH• Always transmitted• Inner-Loop Power Control!• Setting of E-DPCCH & E-DPDCH

power relative to DPCCH

power• PtxUE < min [Ptx,maxUE; max Ptx,cell*]

Taken from specification TS 25.213;4.2.1