02-LTE Test Solution Workshop BKK

download 02-LTE Test Solution Workshop BKK

of 82

Transcript of 02-LTE Test Solution Workshop BKK

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    1/82

    Introducing theAgilent Solutions for LTEDesign, Validation, Conformance and Manufacturing 

    1

    Ken Yong LeeWireless Application Engineer

    Agilent Technologies

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    2/82

    Agenda

    • Agilent Solution Across Ecosystem for LTE

    • Design and validation

    - Transmitter Test with Agilent X-series Analyzer

    - Receiver Test with Agilent X-series Generator

    • Conformance Test

    • Network Deployment

    2

     Aerospace & Defense Symposium

    © Agilent Technologies, Inc. 2014

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    3/82

    DesignSimulation

    Module andChipset

    Development

    RF and BBDesign

    Integration

    SystemDesign

    Validation

    Protocol Development

    Pre-conformance

    Conformance

    Manufacturing

    RF Handheld

    Analyzers

    Signal Analyzerswith a variety of

    wirelessMeasurement Apps

    SignalGenerators

    with Signal

    Studio

    software

    Vector signal

    analysis

    software

    3D EM Simulation

    SystemVue (BB)

    ADS/GG (RF/A)

    Agilent Solutions Across the Ecosystem for LTE

    Baseband generator

    and channel emulator

    Interactive

    functional test

    (IFT) SW

    PXI

    solutions

    Widest bandwidth

    analysis for chipset

    design & verification

    Multi-channel

    signal analysis

    Deployment

    RDX for

    DigRF v4

    Scopes and

    Logic AnalyzersLTE / LTE-A

    Signalling, RF

    test platforms

    RF, RRM and

    Protocol

    Conformance and

    DV test systems

    Battery Drain

    Characterization

    Manufacturing test

    platforms

    http://www.google.com/imgres?imgurl=http://magento.siteground.com/media/catalog/product/cache/17/image/5e06319eda06f020e43594a9c230972d/a/c/acer-ferrari-3200-notebook-computer-pc.jpg&imgrefurl=http://magento.siteground.com/index.php/theme6/acer-ferrari-3200-notebook-computer-pc.html&usg=__ZvOarwMeNYSA0pegKKs0nsUhoHo=&h=1100&w=1100&sz=47&hl=en&start=5&zoom=1&itbs=1&tbnid=DDvKfT1J2qggpM:&tbnh=150&tbnw=150&prev=/images?q=pc&hl=en&gbv=2&tbs=isch:1http://www.google.com/imgres?imgurl=http://magento.siteground.com/media/catalog/product/cache/17/image/5e06319eda06f020e43594a9c230972d/a/c/acer-ferrari-3200-notebook-computer-pc.jpg&imgrefurl=http://magento.siteground.com/index.php/theme6/acer-ferrari-3200-notebook-computer-pc.html&usg=__ZvOarwMeNYSA0pegKKs0nsUhoHo=&h=1100&w=1100&sz=47&hl=en&start=5&zoom=1&itbs=1&tbnid=DDvKfT1J2qggpM:&tbnh=150&tbnw=150&prev=/images?q=pc&hl=en&gbv=2&tbs=isch:1

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    4/82

    Agenda

    • Agilent Solution Across Ecosystem for LTE

    • Design and validation

    - Transmitter Test with Agilent X-series Analyzer

    - Receiver Test with Agilent X-series Generator

    • Conformance Test

    • Network Deployment

    4

     Aerospace & Defense Symposium

    © Agilent Technologies, Inc. 2014

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    5/82

    Transmitter Test withAgilent X-Series Signal Analysis

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    6/82

    Agilent X-Series Signal Analysis Portfolio

    • Common X-Series user interface

    • Code-compatible with legacy and all X-Series instruments

    ESAWorld’s most popular

    100 Hz to 26.5 GHz

    8560ECMid-performance30 Hz to 50 GHz

    EXA X-SeriesBalance the challenges

    10 Hz to 26.5 GHz

    10 Hz to 32/44 GHz

    PSAMarket leading

    performance

    3 Hz to 50 GHz

    CXAMaster the essentials

    9 kHz to 7.5 GHz

    9 kHz to 13.6/26.5 GHz

    CSALow-cost portable

    100 Hz to 6 GHz

    MXA X-Series Accelerate in wireless

    10 Hz to 26.5 GHz

    PXA X-SeriesDrive your evolution

    3 Hz to 26.5 GHz

    3 Hz to 43/44/50 GHzApr 11

    May 12

    Dec 12

    MXE EMI receiverKeep the test queue flowing

    20 Hz to 26.5 GHz

    Feb 13

    Real-time

    Jun 13

    Real-time

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    7/82

    Multi-format Support

    • LTE, W-CDMA/HSPA/HSPA+,

    GSM/EDGE/EDGE Evo, cdma2000, 1xEV-DO,

    WiMAX, WLAN …

    Scalable Test Solutions

    • supports both FDD & TDD frame structures

    • tailor the capability & performance from SISO to

    MIMO 

    • easily upgrade as your test needs evolve

    • VSA software connects to X-Series(PXA,MXA,EXA, CXA) signal analyzers,

    oscilloscope, logic analyzer, and more… 

    X-Series (MXA/EXA)

    Signal Analyzer

    N9080A / N9082A Software

    One button measurements

    for conformance testing and

    early mfg

    89601 VSA Software

    Ultimate analysis flexibility

    for R&D

    3GPP LTE RF Test SolutionsFor Transmitter Test

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    8/82

    LTE FDD/TDD

    MSR

    W-CDMA/HSPA+

    GSM/EDGE/EVO

    TD-SCDMA/HSPA

    1xEV-DO

    cdma2000/cdmaOne

    iDEN/WiDEN/MotoTalk

    Mobile WiMAX™ 

    Fixed WiMAX

    802.11 WLAN a/b/g/n/ac

    Bluetooth®

    CMMB

    Digital cable TV

    DTMB (CTTB)

    DVB-T/H/T2

    ISDB-T/Tmm 

     Analog demodulation

    Phase noise

    Noise figure

    VXA vector signal analysis

    EMC

    MATLAB

    Pulse

    Remote & SCPI languagecompatibility

    Cellular communication Wireless connectivity Digital video General purpose

    X-Series Measurement ApplicationsBroad coverage for today’s multi-format needs

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    9/82

    LTE-Advanced FDD/TDD

    LTE FDD/TDD

    W-CDMA/HSPA/HSPA+

    TD-SCDMA/HSPA

    GSM/EDGE/EDGE Evo

    cdma2000/1xEV-DO

    802.11ac WLAN

    802.11n WLAN

    802.11a/b/g/p/j WLAN

    802.16 WiMAX

    MB-OFDM UWB

    RFID

    SOQPSK

    Custom APSK

    8-channel analysis

    Time-gated analysis

    Capture/playback

    Multi-measurements

    89600 VSA for simulation

    Source control

     AM/FM/PM demod

    Flexible digital demod

    Custom OFDM

    Cellularcommunications

    Wirelessconnectivity

    Audio/videobroadcasting

    GeneralRF & MW

    Detection, positioning,

    tracking & navigation

     ATSC, ATSC-M/H

    DVB-C, DVB-S, DVB-S2

    J.83A/B/C

    DOCSIS, ISDB-C

    DAB, DVB-T/H/SH

    Platforms: Signal analyzers, oscilloscopes, logic analyzers, modular instruments, simulink, ADS, SystemVue

    89600 VSA SoftwareIndustry-leading analysis software for wireless R&D

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    10/82Page 10

    Transmitter Characteristics – eNB

    6.2 Base Station Output Power

    6.3 Output Power Dynamics

    6.4 Transmit ON/OFF Power

    6.5 Transmit Signal Quality

    • 6.5.1 Frequency Error

    • 6.5.2 Error Vector Magnitude

    • 6.5.3 Time alignment between transmitter branches• 6.5.4 DL RS power

    6.6 Unwanted Emissions

    • 6.6.1 Occupied bandwidth

    • 6.6.2 Adjacent Channel Leakage Power Ratio (ACLR)

    • 6.6.3 Operating band unwanted emissions ( same as SEM)• 6.6.4 Transmitter spurious emission

    6.7 Transmit Intermodulation

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    11/82Page 11

    Transmitter Characteristics – UE

    6.2 Transmit Power

    6.3 Output Power Dynamics

    6.4 Control and Monitoring Functions

    6.5 Transmit Signal Quality

    • 6.5.1 Frequency error

    • 6.5.2 Transmit modulation

    - 6.5.2.1 Error Vector Magnitude (EVM)

    - 6.5.2.2 IQ-Component

    - 6.5.2.3 In-band Emissions

    - 6.5.2.4 Spectrum Flatness

    6.6 Output RF Spectrum Emissions

    • 6.6.1 Occupied bandwidth

    • 6.6.2 Out of band emission- 6.6.2.1 Spectrum emission mask (SEM)

    - 6.6.2.3 Adjacent channel leakage power ratio (ACLR)

    • 6.6.3 Spurious emissions

    6.7 Transmit Intermodulation

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    12/82Page 12

    Transmit Power – UE“Does the UE transmit too much or too little?” 

    MOP (Maximum Output Power)• Method: broadband power measurement (No change from

    UMTS)

    MPR (Maximum Power Reduction)

    • Definition: Power reduction due to higher order modulation and transmit

    bandwidth (RB) – this is for UE power class 3

    A-MPR (Additional MPR)

    • Definition: Power reduction capability to meet ACLR and SEM

    requirements

    Agilent 89601A VSA provides power

    measurement for each active channel

    after demodulation

    Channel power measurement using

    swept spectrum analyzer

    These methods are used to fine-tune the UE so that it can operate at high

    data rates in deployments with higher spurious emissions and then scale

    back its maximum power; for example, at the cell edge where the UE is

    more sensitive to out-of-channel emissions.

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    13/82Page 13

    Occupied Bandwidth Requirement“Does most UE energy reside within its channel BW?” 

    Occupied bandwidth Measure the bandwidth of the LTE signal that contains

    99% of the channel power

    Occupied channel bandwidth 

    Occupied Bandwidth [MHz]  1.08 2.7 4.5 9 13.5 18

    Channel bandwidth (MHZ) 1.4 3 5 10 15 20

    Minimum Requirement:  The

    occupied bandwidth shall be less than

    the channel bandwidth specified in the

    table below

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    14/82Page 14

    ACLR Requirements – UE caseDoes the UE transmit in adjacent channels?” 

     ACLR defined for two cases:•E –UTRA (LTE) ACLR1 with rectangular measurement filter (No TX/RX Filter defined)•UTRA (W-CDMA) ACLR1 and ACLR 2 with 3.84 MHz RRC measurement filter with

    roll-off factor  =0.22. 

    E-UTRAACLR1  UTRA ACLR2  UTRAACLR1 

    RB 

    E-UTRA channelΔf OOB 

    TR 36.101 v8.2.0 Figure 6.6.2.3 -1: Adjacent Channel Leakage requirements

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    15/82Page 15

    Transmitter Tester for RF Power Measurements

    Agilent’s PXA, MXA and EXA signal analyzers have flexible power suite measurements that

    can be set to make Channel Power, ACP, SEM and Spurious emission tests.

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    16/82Page 16

    Frequency Error Test (eNB and UE)“Does the eNB/UE accurately track UL/DL frequency?” 

    A quick test is use the Occupied BW measurement

    (Agilent 89601A VSA SW shown) An accurate measurement can then be made using

    the demodulation process

    •Minimum Requirement (observedover 1 ms):

     –UE: ±0.1 PPM

     –BS: ±0.05 PPM

    If the frequency error is larger than afew sub-carriers, the receiver demod

    may not operate, and could cause

    network interference

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    17/82Page 17

    Analyzing the Equalizer Results from an IdealSC-FDMA signal

    Transition from RS unity circle to 16QAM

    Amplitude flatness ± 0.1 dB

    Phase flatness ± 0.5 degrees

    Amplitude flatness for outer 10 RB

    Subcarrier relative flatness for outer 10 RB

    10 MHz IQ

    constellation

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    18/82Page 18

    EVM Measurement – OFDMA & SC-FDMA 

    Various EVM metrics are available on 89601A LTE application:

    • Composite RMS EVM

    • Peak EVM

    • Data EVM

    • Reference Signal (pilot) EVM

    • EVM for individual active channels

    • EVM for non-allocated resource blocks

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    19/82Page 19

    Modulation Analysis16QAM data plus CAZAC Reference Signal

    The 16QAM data

    channel

    The reference

    signal (pilot)

    The Non-Allocated  

    subcarriers are

    shown at the centre

    (Note: this can be

    turned off)

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    20/82Page 20

    EVM Traces to Reveal Filter Effects

    The RB’s and

    subcarriers at

    the edges

    have highEVM because

    of the fast

    roll-off of the

    filter used.EVM vs. Resource Block (RB)

    EVM vs. Subcarriers

     As such, the edge RB is

    unlikely to support 64QAM.

    Unique Agilent measurement capability

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    21/8221

    Receiver Test withAgilent X-Series Signal Generators

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    22/82

    THE WORLDS BEST 

    PERFORMANCE 

    MOST SOPHISTICATED REAL-TIME APPLICATIONS 

    LOWEST COST OF OWNERSHIP 

    X-Series Signal Generators

    Vector Signal Generator

    Modulation BW : 160MHz

    Modulation BW : 120MHz

    Modulation BW : 100MHz

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    23/82

    LTE/LTE-Advanced FDD

    + MIMO

    LTE/LTE-Advanced TDD

    + MIMO 

    W-CDMA/HSPA+ 

    GSM/EDGE/Evo 

    cdma2000/1xEV-DO 

    TD-SCDMA/HSDPA 

    WLAN 802.11a/b/g/n/ac

    +MIMO 

    Mobile WiMAX +MIMO 

    Bluetooth

    - V1.1, V2.1+EDR

    - Low Energy

    Digital Video 

    - DVB-T/H/T2/C/S/S2- J.83 Annex A/B/C

    - DOCSIS DS

    - ISDB-T/TB/TSB/Tmm

    - DTMB(CTTB)

    - CMMB

    - ATSC, ATSC-M/H

    Broadcast Radio:

    - FM Stereo/RDS

    - DAB/DMB/ETI

    GNSS - GPS,GLONAS,Galileo,

    Beidou(Compass),SBAS, QZSS

    Toolkit 

    Multitone 

    Phase Noise Impairment 

    Calibrated Noise (AWGN)

    Custom Modulation

    MATLAB

    ADS / SystemVue

    Signal Studio software

    Embedded software

    Partner products

    Legend

    Cellular

    communicationsWireless

    connectivity

    Audio/video

    broadcasting

    General

    RF & MWDetection, positioning,

    tracking & navigation

    5 Pack & 50 Pack Waveform Licensing

    RADAR - FM chirp, step/AMstep /BPSK, QPSK/Barker, Frank &polyphase codes

    - PRI patterns,signal impairments,

    antenna radiation,modulation import

    Multi-tone Distortion 

    ,

    Streaming (Xcom)

    Signal Studio & Embedded SoftwareMost Comprehensive & Sophisticated Applications

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    24/82

    Page 24

    Receiver characteristics:

    Reference sensitivity level

    Dynamic range

    Adjacent Channel Selectivity (ACS)

    Blocking characteristics

    Intermodulation characteristics

    In-channel selectivity

    Spurious emissions

    Types of Receiver Test – Uplink & Downlink

    Solving test needs:

     Flexibility to easily create varying signals that simulate real-world conditions

     Signal generation capability that evolves as the standard evolves to ensure

    most accurate test results

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    25/82

    Signal Studio for LTE/LTE-A (N7624B/N7625B)eNB Component and Receiver Test

    Easy E-TM generation with pre-defined

    settings with E-TM Wizard

    Multi-carrier signal generation forLTE-Advanced carrier aggregation

    and MSR

    CCDF graph and CCDF curve

    adjustment using pre and post FIR filter

    clipping

    Supports both LTE and LTE-Advanced

    FDD and TDDReceiver Characteristics Test

    Fully coded UL FRC generation for

    wanted carrier with FRC Wizard

     All PUCCH formats with multi-user

    configurations through PUCCH Wizard

    Scenario based HARQ test E-UTRA interferer generation

    Supports LTE FDD and TDD

    Spectrally-correct signals for ACLR,

    channel power, spectral mask, and

    spurious testing

    Component Test

    DL E-TM

    Signal Analyzer

    eNB

    Wanted, UL FRC

    Interferer, E-UTRA/CW

    Rx+

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    26/82

    Spectrally-correct signals for ACLR,

    channel power, spectral mask, and

    spurious testing Easy UL RMC generation using pre-

    defined configuration with RMC Wizard

    CCDF graph and CCDF curve

    adjustment using pre and post FIR filter

    clipping

    Supports both LTE and LTE-Advanced

    FDD and TDD

    Receiver Characteristics and Functional Tests

    Fully coded DL FRC generation for wanted

    carrier with FRC Wizard

    Tx diversity and up to 4x4 MIMO

    Master information block (MIB) and user-

    definable system information block (SIB) E-MBMS testing with MCH/PMCH and

    MBSFN RS

    Scenario based HARQ test

    E-UTRA interferer generation

    Supports LTE FDD and TDD

    Component Tests

    UL RMC

    Signal Analyzer

    UE

    Wanted, DL FRC

    Interferer, E-UTRA/CW

    Rx+

    Signal Studio for LTE/LTE-A (N7624B/N7625B)UE Component and Receiver Test

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    27/82

    Signal Studio for LTE/LTE-A (N7624B/N7625B)eNB Closed Loop Receiver Test (Real-time)

    EXG/MXG vector signal generators

    with Real-Time capability support

    eNB Receiver Tests that require

    closed loop feedback

    Closed loop test support includes:

    Retransmission with HARQ

    (Hybrid ARQ) feedback Timing adjustment with TA

    (Timing Advance) feedback

    EXG/MXG performs HARQ

    retransmission and timing advance

    (TA) operation based on the

    received feedback in real-time

    Signal Studio for real-time LTEprovides quick and easy FRC

    configuration for both FDD & TDD

    Real-Time SNR/AWGN control

    LTE Receiver Performance Test with Real-Time Signal Generation

    eNB

    Rx A

    Rx B

    HARQ/TA feedback

    Wanted, UL

    RF RF

    Interferer

    RF RF

    IN OUT

    Fader

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    28/82

    Page 28

    2x2, 4x4 Spatial Multiplexing with CDD and Static Multipath Fading

    2x2 SDM

    Enable each

    Transmission Path

    2x2

    Cyclic Delay DiversityProper matrix is selected

    MIMO

    spatial matrix

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    29/82

    LTE-A CA

     Agilent Solution:

    • Signal Studio software generates LTE-Advanced

    signals compliant to the Release 10 standard to

    test power and modulation characteristics of

    components and transmitters.

    • Supports up to 5 component carriers within up to

    160 MHz I/Q bandwidth with MXG vector signal

    generator

    • CCDF curve to get insight into the waveform

    power statistics as system parameters are varied

    Test Challenge:  Characterizing the LTE-Advanced UE or eNB power amplifier presents

    RF challenge. The different carrier aggregation configurations will stress the amplifier indifferent ways since each will have different peak-to-average ratios.

    Configure up to

    5 componentcarriers

    29

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    30/82

    Test Challenges: Analyze the Multiple Transmit and Receive ChainsSimultaneously

     Agilent Solutions: 

    89600 VSA software

    Inter-band and intra-band carrieraggregation support for both uplink and

    downlink, FDD and TDD

    Hardware: X-Series signal analyzers or

    N7109A multi-channel signal analyzer

    Two component carriers at

    800 MHz

    One component

    carrier at 2100 MHz

    Test Challenge:  For Release 10, the multiple component carriers must arrive at the

    receiver at the same time, time alignment error of 1.3 µs for inter-band and 130 ns forintra-band. This requires simultaneous demodulation of the multiple component carriers 

    30

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    31/82

    ≈ 

    R e s o ur  c e b l   o ck 

    Inter-Band Carrier Aggregation Analysis

    Band A Band B

    N7109A

    OR

    Test Challenge:  Demodulating inter-band carrier aggregated signals require signal analyzer

    with bandwidth that spans multiple frequency bands (ex. 800 MHz and 2100 MHz) 

    •10 MHz Freq ref.

    •Time sync

    CC from“Band A” 

    CC from

    “Band B” 

    Dual signal analyzer

    Ag i lent Solut ion:

    Dual input hardware, fully synchronized , plus 89600 VSA software. VSA software acquires

    all the CCs simultaneously, demodulate the captured signals, and analyze them all

    simultaneously 

    Two CCs at 800 MHz Three CCs at 2100 MHz

    31

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    32/82

    Test Challenges: Simultaneous Analysis of Inter-Band AggregationPlus Downlink MIMO

     Agilent Solution: 

    • N7109A multi-channel signal analysis

    system: 2, 4 or 8 channels, 40 MHz

    demodulation BW per channel

    Test Challenge:  when inter-band carrier aggregation is combined with spatial multiplexing

    MIMO, it requires test tools that has a minimum of 4 inputs (two inputs per CC).

    Up to 8

    channels

    MIMO

    Info trace

    for CC0

    MIMO

    Info trace

    for CC1

    Frequency

    response

    for CC0

    Frequency

    response

    for CC0

    Constellation

    for CC0

    Constellation

    for CC1

    Example of 2x2 MIMO and inter-band carrier aggregation with two

    component carriers

    32

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    33/82

    Agenda

    • Design and validation

    - Transmitter Test

    - Receiver Test

    • Conformance Test

    • Network Deployment

    33

     Aerospace & Defense Symposium

    © Agilent Technologies, Inc. 2014

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    34/82

    Defining Conformance

    34

    Specific set of tests performed:

    •  According to standards• By an approved test lab (could be manufacturer’s own) 

    • On an approved test platform

    Only devices that pass the tests can be released into the market

     All other types of tests are called pre-conformance or D&V

    Test Specs

    (TS…..) 

    - A set of test cases- Includes bands of operation

    - Constantly evolves, over

    ‘releases’ 

    Test Platform

    (TP…..) 

    - Approved test systems/tools/instruments

    - RF, PCT or RRM

    - Must keep pace with standards

    - Covers 80-90% of TS to be

    approved

    Validation

    - Done by test lab to approvetest case implementation and

    test platform

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    35/82

    Conformance Test CategoriesRegulatory Conformance & Industry Conformance

    35

    Indus try Approval

    e.g. GCF, PTCRB,

    NFC/BT Logo

    Regulatory Appro val

    e.g. CE, FCC, …… 

    Cert i f ied Product

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    36/82

    Challenges of LTE UE Testing

    36

    Many different LTE bands defined

    Represent additional test requirements besides the inclusion of bothFrequency Division (FDD) and Time Division Duplex (TDD) modes.

    OFDM

    The use of multiple subcarriers instead of single carrier dramatically

    increases the number of combinations under test.

    Bandwidth

    Different System BW are defined which makes more difficult to designers

    optimize parameters valid for all bandwidths.

    Fading & AWGN simulators are required

    Fading simulators and AWGN generators are required tools for testing

    LTE device robustness due to multipath reception and noise interference

    effects.

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    37/82

    Challenges of LTE UE Testing

    37

    Testing time

    Due to the flexibility of the LTE air interface, the number of permutationsthat could be tested is enormous and therefore the testing time required

    to execute them.

    Inter-RAT requirements

    Testing LTE UEs require exercising other radio access technologies(RAT) supported, as well as new inter-RAT tests required by the addition

    of LTE.

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    38/82

    LTE RF Testing Definitions

    38

    3GPP TS 36.101 establishes the minimum RF characteristics and minimum performancerequirements for E-UTRA User Equipment (UE)

    3GPP TS 36.521-1 specifies the measurement procedures for the conformance Radio

    transmission and reception tests of the UE based on the requirements established by the TS 36.101

    Four different sets of Tests are defined classified by the block of functionality under test:

    Chapter 6: Transmitter Characteristics

    Chapter 7: Receiver Characteristics

    Chapter 8: Performance Requirement

    Chapter 9: Reporting of Channel State Information

    T itt Ch t i ti

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    39/82

    Transmitter Characteristics

    39

    Transmit Power:

    • To verify the UE maximum output power ; a too high maximum output power

    may interfere other channels, a too small maximum output power decreasesthe coverage area.

    Output Power Dynamics:

    • To verify the UE’s ability to accurately transmit with a broadband outputpower for different power levels.

    Transmit Signal Quality:• To verify the UE output signal quality. All the results are derived using the

    same common algorithm (Global in-channel as described in TS 36.521-1 Annex E).

    Output RF Spectrum Emissions:

    • To verify that unwanted emissions are below the requirements.

    Transmit intermodulation:

    • It validates the capability of the transmitter to inhibit the generation ofsignals in its non linear elements

    T itt T t C

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    40/82

    Transmitter Test Cases

    40

    Clause Title

    6.2.2 UE maximum output power

    6.2.3 Maximum power reduction (MPR)

    6.2.4  Additional maximum power reduction (A-MPR)

    6.2.5 Configure UE transmitted output power

    6.3.2 Minimum output power

    6.3.4.1 General ON/OFF time mask

    6.3.4.2.1 PRACH time mask

    6.3.4.2.2 SRS time mask

    6.3.5.1 Power control absolute power tolerance

    6.3.5.2 Power Control Relative Power Tolerance

    6.3.5.3  Aggregate power control tolerance

    6.5.1 Frequency error

    6.5.2.1 Error vector magnitude (EVM)

    6.5.2.1A PUSCH-EVM with exclusion period

    6.5.2.2 IQ component

    6.5.2.3 In-band emissions for non allocated RBs

    6.5.2.4 Spectrum flatness

    6.6.1 Occupied bandwidth

    6.6.2.1 Spectrum Emission Mask

    6.6.2.2  Additional Spectrum Emission Mask

    6.6.2.3  Adjacent Channel Leakage Power Ratio

    6.6.3.1 Transmitter Spurious emissions

    6.6.3.2 Spurious emission band UE co-existence

    6.6.3.2-1 Spurious emission band UE co-existence (Rel-9)

    6.6.3.3  Additional spurious emissions

    6.7 Transmit intermodulation

    R i Ch t i ti

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    41/82

    Receiver Characteristics

    41

    Sensitivity:

    • To verify the UE’s ability to receive data under conditions of low signal level,ideal propagation and no added noise.

    Maximum Input:

    • Tests the UE’s ability to receive data under conditions of high signal level,ideal propagation and no added noise.

     Adjacent Channel Selectivity:

    • Tests the ability to receive data in the presence of an adjacent channelsignal at a given frequency offset from the center frequency under conditionsof ideal propagation and no added noise.

    Blocking, spurious, intermodulation:

    • Measure of the receiver's ability to receive a wanted signal at its assignedchannel frequency in the presence of unwanted type of interferers

    Spurious emissions:

    • Verifies that the UE’s emissions generated or amplified in the receiver meetthe requirements

    R i T t C

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    42/82

    Receiver Test Cases

    42

    Clause Title7.3 Reference sensitivity level

    7.4 Maximum input level

    7.5  Adjacent Channel Selectivity (ACS)

    7.6.1 In-band blocking

    7.6.2 Out-of-band blocking

    7.6.3 Narrow band blocking7.7 Spurious response

    7.8.1 Wideband intermodulation

    7.9 Spurious emissions

    P f R i t

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    43/82

    Performance Requirements

    43

    Demodulation of PDSCH/PCFICH/PDCCH/PHICH:

    • To verify the demodulation performance of these channels with a givenSNR and fading channel at different Transmission Modes.

    Set-Up

     Multiple MIMO Transmission Modes are tested

    P f T t C (FDD)

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    44/82

    Performance Test Cases (FDD)

    44

    Clause Title

    8.2.1.1.1 FDD PDSCH single antenna port performance

    8.2.1.1.1-1 FDD PDSCH Single Antenna Port Performance (Rel-9)8.2.1.1.2 FDD PDSCH Single Antenna Port Performance with 1 PRB

    8.2.1.2.1 FDD PDSCH transmit diversity performance 2x2

    8.2.1.2.1-1 FDD PDSCH transmit diversity performance 2x2 (Rel-9)

    8.2.1.2.2 FDD PDSCH Transmit Diversity 4x2

    8.2.1.2.2-1 FDD PDSCH Transmit Diversity 4x2 (Rel-9)

    8.2.1.3.1 FDD PDSCH open loop spatial multiplexing 2x2

    8.2.1.3.2 FDD PDSCH Open Loop Spatial Multiplexing 4x2

    8.2.1.4.1 FDD PDSCH closed loop single/multi layer spatial multiplexing 2x28.2.1.4.1-1 FDD PDSCH closed loop multi layer spatial multiplexing 2x2 (Rel-9)

    8.2.1.4.2 FDD PDSCH Closed Loop Single/Multiple Layer Spatial Multiplexing 4x2

    8.2.1.4.2-1 FDD PDSCH Closed Loop Single/Multiple Layer Spatial Multiplexing 4x2 (Rel-9)

    8.4.1.1 FDD PCFICH/PDCCH single antenna port performance

    8.4.1.2.1 FDD PCFICH/PDCCH transmit diversity performance 2x2

    8.4.1.2.1-1 FDD PCFICH/PDCCH transmit diversity performance 2x2 (Rel-9)

    8.4.1.2.2 FDD PCFICH/PDCCH transmit diversity performance 4x2

    8.4.1.2.2-1 FDD PCFICH/PDCCH transmit diversity performance 4x2 (Rel-9)

    8.5.1.1 FDD PHICH single-antenna port performance

    8.5.1.2.1 FDD PHICH transmit diversity performance 2x2

    8.5.1.2.1-1 FDD PHICH transmit diversity performance 2x2 (Rel-9)

    8.5.1.2.2 FDD PHICH transmit diversity performance 4x2

    8.5.1.2.2-1 FDD PHICH transmit diversity performance 4x2 (Rel-9)

    8.7.1.1 FDD Sustained data rate performance provided by lower layers (Rel-9) 

    Performance Test Cases (TDD)

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    45/82

    Performance Test Cases (TDD)

    45

    Clause Title

    8.2.2.1.1 TDD PDSCH single antenna port performance

    8.2.2.1.1-1 TDD PDSCH Single Antenna Port Performance (Rel-9)

    8.2.2.1.2 TDD PDSCH Single Antenna Port Performance with 1 PRB

    8.2.2.2.1 TDD PDSCH transmit diversity performance 2x28.2.2.2.1-1 TDD PDSCH transmit diversity performance 2x2 (Rel-9)

    8.2.2.2.2 TDD PDSCH Transmit Diversity 4x2

    8.2.2.2.2-1 TDD PDSCH Transmit Diversity 4x2 (Rel-9)

    8.2.2.3.1 TDD PDSCH open loop spatial multiplexing 2x2

    8.2.2.3.2 TDD PDSCH Open Loop Spatial Multiplexing 4x2

    8.2.2.4.1 TDD PDSCH closed loop single/multi layer spatial multiplexing 2x2

    8.2.2.4.1-1 TDD PDSCH closed loop multi layer spatial multiplexing 2x2 (Rel-9)

    8.2.2.4.2 TDD PDSCH Closed Loop Single/Multiple Layer Spatial Multiplexing 4x2

    8.2.2.4.2-1 TDD PDSCH Closed Loop Single/Multiple Layer Spatial Multiplexing 4x2 (Rel-9)8.3.2.1.1 TDD PDSCH single-layer spatial multiplexing on antenna port 5 

    8.3.2.1.1-1 TDD PDSCH single-layer spatial multiplexing on antenna port 5 (Rel-9)

    8.3.2.1.2 TDD PDSCH Single-layer Spatial Multiplexing on antenna port 7 or 8 without a simultaneous transmission (Rel-9)

    8.3.2.1.3 TDD PDSCH single-layer spatial multiplexing on antenna port 7 or 8 with a simultaneous transmission (Rel-9)

    8.3.2.2.1 TDD PDSCH dual-layer spatial multiplexing (Rel-9) 

    8.4.2.1 TDD PCFICH/PDCCH single antenna port performance

    8.4.2.2.1 TDD PCFICH/PDCCH transmit diversity performance 2x2

    8.4.2.2.1-1 TDD PCFICH/PDCCH transmit diversity performance 2x2 (Rel-9)

    8.4.2.2.2 TDD PCFICH/PDCCH transmit diversity performance 4x28.4.2.2.2-1 TDD PCFICH/PDCCH transmit diversity performance 4x2 (Rel-9)

    8.5.2.1 TDD PHICH single-antenna port performance

    8.5.2.2.1 TDD PHICH transmit diversity performance 2x2

    8.5.2.2.1-1 TDD PHICH transmit diversity performance 2x2 (Rel-9)

    8.5.2.2.2 TDD PHICH transmit diversity performance 4x2

    8.5.2.2.2-1 TDD PHICH transmit diversity performance 4x2 (Rel-9)

    8.7.2.1 TDD Sustained data rate performance provided by lower layers (Rel-9) 

    Reporting of Channel State Information

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    46/82

    Reporting of Channel State Information

    46

    CQI Reporting under AWGN:

    • To verify the variance of the wideband CQI (Channel Quality Indicator)reports is within the limits defined.

    CQI Reporting under fading:

    • To verify the accuracy of sub-band channel quality indicator (CQI)

    reporting under frequency selective fading conditions.

    Reporting of PMI:

    • To verify the accuracy of Precoding Matrix Indicator (PMI) reporting

    such that the system throughput is maximized.

    Reporting of RI:

    • To verify that the reported rank indicator accurately represents the

    channel rank. 

    Reporting of Channel State Information Test Cases

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    47/82

    Reporting of Channel State Information Test Cases(FDD)

    47

    Clause Title

    9.2.1.1 FDD CQI reporting under AWGN conditions – PUCCH 1-0

    9.2.2.1 FDD CQI reporting under AWGN conditions – PUCCH 1-1

    9.3.1.1.1 FDD CQI Reporting under fading conditions – PUSCH 3-0

    9.3.2.1.1 FDD CQI Reporting under fading conditions – PUCCH 1-0

    9.3.2.1.1-1 FDD CQI Reporting under fading conditions – PUCCH 1-0 (Rel-9)

    9.3.3.1.1 FDD CQI Reporting under fading conditions and frequency-selective interference – PUSCH 3-0

    9.3.4.1.1 FDD CQI Reporting under fading conditions – PUSCH 2-0 (Rel-9)

    9.3.4.2.1 FDD CQI Reporting under fading conditions – PUCCH 2-0 (Rel-9)

    9.4.1.1.1 FDD PMI Reporting – PUSCH 3-1 (Single PMI)

    9.4.1.2.1 FDD PMI Reporting – PUCCH 2-1 (Single PMI) (Rel-9)

    9.4.2.1.1 FDD PMI Reporting – PUSCH 1-2 (Multiple PMI)

    9.4.2.1.1-1 FDD PMI Reporting – PUSCH 1-2 (Multiple PMI) (Rel-9)9.4.2.2.1 FDD PMI Reporting – PUSCH 2-2 (Multiple PMI) (Rel-9)

    9.5.1.1 FDD RI Reporting – PUCCH 1-1

    Reporting of Channel State Information Test Cases

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    48/82

    Reporting of Channel State Information Test Cases(TDD)

    48

    Clause Title

    9.2.1.2 TDD CQI reporting under AWGN conditions – PUCCH 1-0

    9.2.2.2 TDD CQI reporting under AWGN conditions – PUCCH 1-1

    9.3.1.1.2 TDD CQI Reporting under fading conditions – PUSCH 3-0

    9.3.2.1.2 TDD CQI Reporting under fading conditions – PUCCH 1-0

    9.3.2.1.2-1 TDD CQI Reporting under fading conditions – PUCCH 1-0 (Rel-9)

    9.3.3.1.2 TDD CQI Reporting under fading conditions and frequency-selective interference – PUSCH 3-0

    9.3.4.1.2 TDD CQI Reporting under fading conditions – PUSCH 2-0 (Rel-9)

    9.3.4.2.2 TDD CQI Reporting under fading conditions – PUCCH 2-0 (Rel-9)

    9.4.1.1.2 TDD PMI Reporting – PUSCH 3-1 (Single PMI)

    9.4.1.2.2 TDD PMI Reporting – PUCCH 2-1 (Single PMI) (Rel-9)

    9.4.2.1.2 TDD PMI Reporting – PUSCH 1-2 (Multiple PMI)

    9.4.2.1.2-1 TDD PMI Reporting – PUSCH 1-2 (Multiple PMI) (Rel-9)9.4.2.2.2 TDD PMI Reporting – PUSCH 2-2 (Multiple PMI) (Rel-9)

    9.5.1.2 TDD RI Reporting – PUSCH 3-1

    Carrier Aggregation RF testing

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    49/82

    Carrier Aggregation RF testing

    49

    RF Testing (3GPP TS36.521-1)

    • Most of the work already done was on intra-band contiguous CA in both UL and DL

    • Work for inter-band CA still in the early stages

    s6. Transmittercharacteristics

    • Specific test forInter-band CAwith 1 UL CC.

    s7. Receivercharacteristics

    • Specific tests forinter-band CA

    • Intra-band withand without ULCA

    s8. Performancerequirement

    • Specific tests forinter-band CA

    • Involves MIMO,fading and

     AWGN

    CA RF Transmitter Test Cases

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    50/82

    CA RF Transmitter Test Cases

    50

    Clause Title

    6.2.2A.1 UE maximum output power for intra-band contiguous carrier aggregation (CA) 6.2.3A.1 Maximum power reduction (MPR) for intra-band contiguous carrier aggregation (CA) 

    6.2.4A.1  Additional maximum power reduction (A-MPR) for intra-band contiguous carrier aggregation (CA)

    6.2.5A.1 Configure UE transmitted power for intra-band contiguous carrier aggregation (CA) 

    6.2.5A.2 Configure UE transmitted power for inter-band contiguous carrier aggregation (CA) 

    6.3.2A.1 Minimum Output Power for intra-band contiguous carrier aggregation (CA) 

    6.3.3A.1 UE Transmit OFF power for intra-band contiguous carrier aggregation (CA) 

    6.3.4A.1.1 General ON/OFF time mask for intra-band contiguous carrier aggregation (CA) 

    6.3.5A.1.1 Power control absolute power tolerance for intra-band contiguous carrier aggregation (CA) 

    6.3.5A.2.1 Power Control Relative Power Tolerance for intra-band contiguous carrier aggregation (CA) 6.3.5A.3.1  Aggregate power control tolerance for intra-band contiguous carrier aggregation (CA) 

    6.5.1A.1 Frequency error for intra-band contiguous carrier aggregation (CA) 

    6.5.2A.1.1 Error vector magnitude (EVM) for intra-band contiguous carrier aggregation (CA) 

    6.5.2A.2.1 Carrier leakage for intra-band contiguous carrier aggregation (CA) 

    6.5.2A.3.1 In-band emissions for non allocated RBs for intra-band contiguous carrier aggregation (CA) 

    6.6.1A.1 Occupied bandwidth for intra-band contiguous carrier aggregation (CA) 

    6.6.2.1A.1 Spectrum Emission Mask for intra-band contiguous carrier aggregation (CA) 

    6.6.2.3A.1  Adjacent Channel Leakage Power Ratio for intra-band contiguous carrier aggregation (CA) 

    6.6.3.1A.1 Transmitter Spurious emissions for intra-band contiguous carrier aggregation (CA) 6.6.3.2A.1 Spurious emission band UE co-existence for intra-band contiguous carrier aggregation (CA) 

    6.6.3.3A.1  Additional spurious emissions for intra-band contiguous carrier aggregation (CA) 

    6.7A .1 Transmit intermodulation for intra-band contiguous carrier aggregation (CA) 

    CA RF Receiver Test Cases

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    51/82

    CA RF Receiver Test Cases

    51

    Clause Title

    7.3A.1 Reference sensitivity level for CA (intra-band contiguous DL CA and UL CA)

    7.3A.2 Reference sensitivity level for CA (intra-band contiguous DL CA without UL CA)

    7.3A.3 Reference sensitivity level for CA (inter-band DL CA without UL CA)

    7.4A.1 Maximum input level for CA (intra-band contiguous DL CA and UL CA)

    7.4A.2 Maximum input level for CA (intra-band contiguous DL CA without UL CA)

    7.5A.1  Adjacent Channel Selectivity (ACS) for CA (intra-band contiguous DL CA and UL CA)

    7.5A.2  Adjacent Channel Selectivity (ACS) for CA (intra-band contiguous DL CA without UL CA)

    7.5A.3  Adjacent Channel Selectivity (ACS) for CA (inter-band DL CA without UL CA)

    7.6.1A.1 In-band blocking for CA (intra-band contiguous DL CA and UL CA)

    7.6.1A.2 In-band blocking for CA (intra-band contiguous DL CA without UL CA)7.6.1A.3 In-band blocking for CA (inter-band DL CA without UL CA)

    7.6.2A.1 Out-of-band blocking for CA (intra-band contiguous DL CA and UL CA)

    7.6.2A.2 Out-of-band blocking for CA (intra-band contiguous DL CA without UL CA)

    7.6.2A.3 Out-of-band blocking for CA (inter-band DL CA without UL CA)

    7.6.3A.1 Narrow band blocking for CA (intra-band contiguous DL CA and UL CA)

    7.6.3A.2 Narrow band blocking for CA (intra-band contiguous DL CA without UL CA)

    7.6.3A.3 Narrow band blocking for CA (inter-band DL CA without UL CA)

    7.7A.1 Spurious response for CA (intra-band contiguous DL CA and UL CA)7.7A.2 Spurious response for CA (intra-band contiguous DL CA without UL CA)

    7.7A.3 Spurious response for CA (inter-band DL CA without UL CA)

    7.8.1A.1 Wideband intermodulation for CA (intra-band contiguous DL CA and UL CA)

    7.8.1A.2 Wideband intermodulation for CA (intra-band contiguous DL CA without UL CA)

    7.8.1A.3 Wideband intermodulation for CA (inter-band DL CA without UL CA)

    7.10A Receiver image for CA

    CA RF Performance Test Cases

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    52/82

    CA RF Performance Test Cases

    52

    Clause Title

    8.2.1.1.1_A.1 FDD PDSCH Single Antenna Port Performance for CA (intra band contiguous DL CA)

    8.2.1.1.1_A.2 FDD PDSCH Single Antenna Port Performance for CA (inter band DL CA)

    8.2.1.3.1_A.1 FDD PDSCH Open Loop Spatial Multiplexing 2x2 for CA (intra-band contiguous DL CA)

    8.2.1.3.1_A.2 FDD PDSCH Open Loop Spatial Multiplexing 2x2 for CA (inter-band DL CA)

    8.2.1.4.2_A.1 FDD PDSCH Closed Loop Multi Layer Spatial Multiplexing 4 x 2 for CA (inter band DL CA)

    8.2.2.1.1_A.1 TDD PDSCH Single Antenna Port Performance for CA (intra band contiguous DL CA)

    8.2.2.3.1_A.1 TDD PDSCH Open Loop Spatial Multiplexing 2x2 for CA (intra band contiguous DL CA)

    8.2.2.4.2_A.1 TDD PDSCH Closed Loop Multi Layer Spatial Multiplexing 4x2 for CA (intra band contiguous DL CA)

    8.7.1.1_A.1 FDD sustained data rate performance for CA (intra-band contiguous DL CA)8.7.1.1_A.2 FDD sustained data rate performance for CA (inter-band DL CA)

    8.7.2.1_A.1 TDD sustained data rate performance for CA (intra band contiguous DL CA)

    LTE Conformance Test Solution

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    53/82

    Confidential Agilent Technologies

    T2010A LTE Wireless

    Communications Test Set

    LTE Conformance Test Solution

    T2010A LTE Wireless Communications Test Set

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    54/82

    T2010A LTE Wireless Communications Test Set

    54

    Rel-10 CA:

    • 2 CCs, up to MIMO

    4x2 each

    • Combined or

    independent TX/RX

    • Integrated channel emulator

    (up to MIMO 4x2)

    •  AWGN

    • Power level accuracy asrequired by 3GPP test

    standards

    • UL measurements

    • Sensitivity and receiver

    performance measurements

    • One box solution

    • RF, RRM and

    Protocol

    conformance test

    cases

    T4010S LTE RF Test System

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    55/82

    Full test system configuration

    Bench-top configuration

    T4010S LTE RF Test System

    T4010S LTE RF Test System

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    56/82

    T4010S LTE RF Test System

    TechnologiesT4020S LTE RRM Test System

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    57/82

    Technologies

    Application

    Based on the T2010A LTE Wireless Communications Test Setacting as a multi-cell, multi-RAT network emulator; T4020S

    LTE RRM Tester supports testing of RRM test cases as

    defined in 3GPP 36.521-3

    Main Features• Optimized hardware platform, that allows software-only

    upgrade to T4110S LTE Protocol Tester

    • Based on the T2010A LTE Wireless Communications Test Set

    plus additional testing software

    • FDD and TDD support

    • Provides MIMO 2x2, integrated multipath channel emulation

    and multi-RAT capabilities on the same hardware platform

    • Complete LTE only and iRAT-3G RRM coverage with two

    Test Sets

    T4020S LTE RRM Test System

    TechnologiesT4110S LTE Protocol Test System

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    58/82

    Technologies

    The T4110S LTE Protocol Tester is the essential tool for LTE protocol stack and testing

    engineers to develop, debug, test and certify LTE UEs.

    Application

    Main Features• Conformance Protocol Testing of LTE UEs

    • According to 3GPP TS 36.523 test specification

    • Based on T2010A LTE Wireless Communications Test Set

    • 85% currently defined GCF/PTCRB LTE test casescoverage with one Test Set.

    • Easy software upgrades to support RF and RRM LTE

    test cases.

    • TTCN-3 test case development tools

    • Supports LTE FDD, TDD, multi-cell, inter-band and multi-

    RAT test cases• Powerful test case results and logging analysis tools

    • Full test system automation

    • Remote test system operation

    T4110S LTE Protocol Test System

    Agenda

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    59/82

    Agenda

    • Design and validation

    - Transmitter Test

    - Receiver Test

    • Conformance Test

    • Network Deployment

    59

     Aerospace & Defense Symposium© Agilent Technologies, Inc. 2014

    Fi ld T ti

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    60/82

    Received signal levelPower measurement

    Path loss verification

    Signal analysis to find out if any interference

     Antenna/WG/cable sweep

    Filter/combiner verification

    TX/RX combiner verification, potentially tuning

    Field Testing 

    Challenges in today’s field test

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    61/82

    Challenges in today s field test 

    • It’s difficult to carry multiple

    instruments to the field• There is a steep learning curve to

    learn how to use every instrument

    VNA

    Cable/ antenna tester

    Spectrum analyzer VNA

    Power meter

    The only one-hand-operation Microwave Analyzer

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    62/82

    The only one-hand-operation Microwave Analyzer

    Cable and Antenna Analyzer

    30kHz to 26.5GHz

    Full 2 port Vector Network

     Analyzer with time domain

    analysis, 30kHz to 26.5GHz

    Spectrum Analyzer, with fullband tracking generator

    5kHz to 26.5GHz

    Power Meter

    5kHz to 26.5GHz

    Independent SignalGenerator

    30kHz to 26.5GHz

    Vector Voltmeter

    2 port, 30kHz to 26.5GHz

    Interference Analyzer

    Variable DC SourceLight weight: 6.6 lbs

    Long battery life: 3.5 hrsBright display: 6.5 inch TFT

    MIL PRF 28800 F Class 2

    CISPR 11 Class B

    Explosive atmosphere

    MIL STD 810G

    Built in GPSFrequency Counter

    RF/uW Handheld Portfolio

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    63/82

    9 GHz

    14 GHz

    18 GHz

    26.5 GHz

    4 GHz

    6 GHz

    RF/uW Handheld Portfolio

    Agilent Confidential

    CAT only VNACombo ANALYZER SA HSA

    20 GHz

    13.4 GHz

    7 GHz

    3 GHz

    N9330B N9912A-104

    N9912A-106

    N9913A

    N9918A

    N9917A

    N9916A

    N9915A

    N9914A

    N9938A

    N9937A

    N9936A

    N9935A

    N9923A-106

    N9923A-104

    N9925A

    N9927A

    N9926A

    N9928A

    N9340B

    N9342C

    N9344C

    N9343C

    Carry Precis ion wi th You!

    Key tests during installation

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    64/82

    Line sweep Antenna alignment

    Frequency measurement Path Loss Verification Combiner tuning

    Key tests during installation 

    High fidelity of Interference detection

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    65/82

    FieldFox offers best in class input related spur performance, gives high confidence

    during interference hunting

    FieldFox

    Accurate power reading in the field

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    66/82

     Agilent Patented InstAlign technologies allows FieldFox to provide unprecedented

    power measurement accuracy under temperature rapid fluctuation

    FieldFox

    Channel

    Power

    Power

    Sensor

    Amplifier Measurement

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    67/82

    Amplifier Measurement

    1. Bandwidth

    2. Gain3. Isolation

    4. Match

    5. DC Power

    Network Analyzer Mode Spectrum Analyzer Mode

    1. Output Power

    2. DC Power3. Harmonics

    4. Spurs

    Agilent Tools to Help You

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    68/82

    Agilent Tools to Help You

    www.agilent.com/find/lte 

    www.agilent.com/find/lte-a 

     Add Youtube videos

    © 2013 Agilent Technologies March

    2013

    Including Webcasts like this.

    http://www.agilent.com/find/ltehttp://www.home.agilent.com/agilent/application.jspx?cc=US&lc=eng&ckey=1852643&nid=-33796.0.00&id=1852643&cmpid=zzfindlte-ahttp://www.home.agilent.com/agilent/application.jspx?cc=US&lc=eng&ckey=1852643&nid=-33796.0.00&id=1852643&cmpid=zzfindlte-ahttp://www.home.agilent.com/agilent/application.jspx?cc=US&lc=eng&ckey=1852643&nid=-33796.0.00&id=1852643&cmpid=zzfindlte-ahttp://www.home.agilent.com/agilent/application.jspx?cc=US&lc=eng&ckey=1852643&nid=-33796.0.00&id=1852643&cmpid=zzfindlte-ahttp://www.agilent.com/find/lte

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    69/82

    Thank you!

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    70/82

    agilent.com/find/lte

    70

     Aerospace & Defense Symposium

    © Agilent Technologies, Inc. 2014

    Thank You!

    DL Physical Mapping – 

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    71/82

    Page 71

    Let’s Check it with VSA Spectrogram

    • See entire frame in frequency and time

    on one display• Find subtle patterns, errors

    Reference Signal

    occurs every 6th

    sub-carrier

    PDCCH occupying 1st 

    3 symbols of each

    sub-frame (~214 us)

    PDSCH

    Eg. 12 RB’s = 2.16 MHzS-SS/P-SS/PBCH 

    S-SS/P-SS 

    Downlink – Let’s Check it with VSA

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    72/82

    Page 72

    Downlink – Let s Check it with VSA P-SS - Primary Synchronization Signal

    S-SS - Secondary Synchronization Signal

    PBCH - Physical Broadcast ChannelPDCCH - Physical Downlink Control Channel

    PDSCH – Physical Downlink Shared Channel

    Reference Signal – (Pilot)

    Slot#0 Symbol#0

    RS + PDCCH(Hint: Same Modulation)

    10 2 3 4 5 6 10 2 3 4 5 6

    Note 2: PMCH, PCFICH, and PHICHnot shown here for clarity

    Downlink – Let’s Check it with VSA

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    73/82

    Page 73

    Downlink – Let s Check it with VSA P-SS - Primary Synchronization Signal

    S-SS - Secondary Synchronization Signal

    PBCH - Physical Broadcast ChannelPDCCH - Physical Downlink Control Channel

    PDSCH – Physical Downlink Shared Channel

    Reference Signal – (Pilot)

    Slot#0 Symbol#1

    PDCCH

    10 2 3 4 5 6 10 2 3 4 5 6

    Downlink – Let’s Check it with VSA

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    74/82

    Page 74

    Downlink – Let s Check it with VSA P-SS - Primary Synchronization Signal

    S-SS - Secondary Synchronization Signal

    PBCH - Physical Broadcast ChannelPDCCH - Physical Downlink Control Channel

    PDSCH – Physical Downlink Shared Channel

    Reference Signal – (Pilot)

    Slot#0 Symbol#3

    PDSCH

    10 2 3 4 5 6 10 2 3 4 5 6

    Downlink – Let’s Check it with VSA

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    75/82

    Page 75

    Downlink – Let s Check it with VSA P-SS - Primary Synchronization Signal

    S-SS - Secondary Synchronization Signal

    PBCH - Physical Broadcast ChannelPDCCH - Physical Downlink Control Channel

    PDSCH – Physical Downlink Shared Channel

    Reference Signal – (Pilot)

    Slot#0 Symbol#4

    RS + PDSCH

    10 2 3 4 5 6 10 2 3 4 5 6

    Downlink – Let’s Check it with VSA

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    76/82

    Page 76

    Downlink – Let s Check it with VSA P-SS - Primary Synchronization Signal

    S-SS - Secondary Synchronization Signal

    PBCH - Physical Broadcast ChannelPDCCH - Physical Downlink Control Channel

    PDSCH – Physical Downlink Shared Channel

    Reference Signal – (Pilot)

    Slot#1 Symbol#0

    RS + PDSCH + PBCH

    10 2 3 4 5 6 10 2 3 4 5 6

    Downlink – Let’s Check it with VSA

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    77/82

    Page 77

    PBCH + PDSCH

    Downlink – Let s Check it with VSA P-SS - Primary Synchronization Signal

    S-SS - Secondary Synchronization Signal

    PBCH - Physical Broadcast ChannelPDCCH - Physical Downlink Control Channel

    PDSCH – Physical Downlink Shared Channel

    Reference Signal – (Pilot)

    Slot#1 Symbol#1

    10 2 3 4 5 6 10 2 3 4 5 6

    Uplink – Let’s Check it by VSA

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    78/82

    Page 78

    PUSCH

    Uplink   Let s Check it by VSA 

    PUSCH - Physical Uplink Shared Channel

    Reference Signal – (Demodulation)

    10 2 3 4 5 6 10 2 3 4 5 6

    Slot #0 Symbol #0

    Uplink – Let’s Check it by VSA 

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    79/82

    Page 79

    PUSCH DM-RS

    p y

    PUSCH - Physical Uplink Shared Channel

    Reference Signal – (Demodulation)

    10 2 3 4 5 6 10 2 3 4 5 6

    Slot #0 Symbol #3

    Uplink – Let’s Check it by VSA

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    80/82

    Page 80

    PUCCH

    Uplink   Let s Check it by VSA 

    PUCCH - Primary Uplink Shared Channel

    PUCCH-DMRS (Format 1)

    Slot #0 Symbol #0

    10 2 3 4 5 6 10 2 3 4 5 6

    Time (Symbol)

       F  r  e  q  u  e  n  c  y

       (   S  u   b  -   C  a  r  r   i  e  r  o  r   R   B   )

    Uplink – Let’s Check it by VSA 

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    81/82

    Page 81

    PUCCH DM-RS

    p y

    PUCCH - Primary Uplink Shared Channel

    PUCCH-DMRS (Format 1) Slot #0 Symbol #2

    10 2 3 4 5 6 10 2 3 4 5 6

    Time (Symbol)

       F  r  e  q  u  e  n  c  y

       (   S  u   b  -   C  a  r  r   i  e  r  o  r   R   B   )

    Uplink Physical Mapping  – 

  • 8/18/2019 02-LTE Test Solution Workshop BKK

    82/82

    p y pp gLet’s Check it with VSA Spectrogram

    • See entire frame in frequency and time

    on one display• Find subtle patterns, errors

    PUCCH occurs on

    Slots #0 and #1 of

    Subframe 2

    (~0.5 ms / Slot)

    LO Feedthru