闪烁探测器 Scintillation Detector

68
闪烁探测器 Scintillation Detector 周荣 Rong ZHOU 四川大学 核科学与工程技术学院 College of Nuclear Science & Engineering, SCU [email protected]

Transcript of 闪烁探测器 Scintillation Detector

Page 1: 闪烁探测器 Scintillation Detector

闪烁探测器

Scintillation Detector

周荣 Rong ZHOU

四川大学 核科学与工程技术学院

College of Nuclear Science & Engineering, SCU

[email protected]

Page 2: 闪烁探测器 Scintillation Detector

Outline

• Configuration and Principle

• Scintillator

• Photomultiplier

PMT

MCP

PD / APD

SiPM

• Scintillation Detector and Spectrometer

Page 3: 闪烁探测器 Scintillation Detector

CONFIGURATION AND PRINCIPLE

OF SCINTILLATION DETECTOR

Page 4: 闪烁探测器 Scintillation Detector

Fluorescence Caused by

Radiation

Page 5: 闪烁探测器 Scintillation Detector

Configuration of a Scintillation

Detector

Page 6: 闪烁探测器 Scintillation Detector

Operating Principle

Radiation injects, Molecules are excited or ionized,

Molecules de-excite, Scintillation photons are emitted.

Scintillation photons are collected by cathode of PMT,

Electrons are emitted

Electrons fly into dynode and more electrons are emitted and fly into next

dynode, which is electrons multiplication

electric signal is output from anode.

Scintillator: radiation to photon PMT: photon to electric signal

Page 7: 闪烁探测器 Scintillation Detector

SCINTILLATOR

Page 8: 闪烁探测器 Scintillation Detector

Various Scintillator

• Inorganic scintillator crystal(doped): NaI(Tl), CsI(Tl), ZnS(Ag),

LaBr3:Ce3+, LaCl3:Ce3+,...

glass: LiO2·2SiO2(Ce),...

pure crystal: BGO, LSO, LYSO, BaF2, ......

• Organic scintillator organic crystal scintillator

organic liquid scintillator

organic plastic scintillator

• Gas scintillator Ar, Xe

Page 9: 闪烁探测器 Scintillation Detector

Characteristics of Scintillator

• Emission spectrum

• Luminous efficiency & light yield

• Decay time

Page 10: 闪烁探测器 Scintillation Detector

Emission Spectrum

Emission spectrum of scintillator is continuous. Emission spectrum of scintillator should match absorption spectrum of PMT when develop a detector.

Page 11: 闪烁探测器 Scintillation Detector

Luminous efficiency

%100E

EC

ph

np

luminous

efficiency energy lost in

scintillator of

incident particles

total energy of

output light

For example: in NaI(Tl), for β particles, Cnp=13%, for α particles, Cnp=2.6%

Page 12: 闪烁探测器 Scintillation Detector

Light Yield

E

nY

ph

ph energy lost in

scintillator of

incident particles

total number of

scintillation photons

vh

C

Evh

E

E

nY

npphph

ph 1

For example: in NaI(Tl), for β particles of 1MeV, hv≈3eV,

1-4 MeV 103.43

13.0

eVYph

Page 13: 闪烁探测器 Scintillation Detector

Decay time

• excitation process takes 10-11~10-9 second

• de-excitation and light output obey

exponential decrease.

t

entn

0

Decay time

0

00 ndtennt

ph

tphe

ntn

Page 14: 闪烁探测器 Scintillation Detector

Fast and Slow decay

sf

t

s

st

f

f

sf en

en

tntntn

The ratio of nf and ns has connection with incident particles, which could be used to discriminate particle category.

Page 15: 闪烁探测器 Scintillation Detector

NaI(Tl) Crystal

• High light yield

• High Z and ρ(3.67g/cm3)

• Hygroscopic

Page 16: 闪烁探测器 Scintillation Detector

CsI(Tl)

• Expansive

• High Z and ρ(4.51g/cm3)

• Low light yield

• Tractable

Page 17: 闪烁探测器 Scintillation Detector

Other Scintillation

• ZnS(Ag): translucent, for α counts

measurement

• BGO:High Z and ρ

• BaF2: fast decay time(0.6ns)

• Liquid scintillator: fast decay time(2.4ns)

• Plastic scintillator: fast decay time(1~3ns)

Page 18: 闪烁探测器 Scintillation Detector

Scintillator Table

Page 19: 闪烁探测器 Scintillation Detector

A Good Scintillator

• Suitable for detected particles

• match PMT well

• high stopping power

• high light yield

• fast decay time

• wide linear region of energy reponse

Page 20: 闪烁探测器 Scintillation Detector

Collection of light

• Reflecting layer

• light coupling agent

• light guide

Page 21: 闪烁探测器 Scintillation Detector

PHOTOMULTIPLIER

Page 22: 闪烁探测器 Scintillation Detector

Photomultiplier

• Photomultiplier Tube(PMT)

• Micro channel plate

• (Avalanche) Photodiode (PD/APD)

• Silicon Photomultiplier(SiPM)

Page 23: 闪烁探测器 Scintillation Detector

PMT

Vacuum Shell

Dynode Anode

track of electrons incident

photons

Focusing Electrode

photocathode

Page 24: 闪烁探测器 Scintillation Detector

Various type of PMT

Page 25: 闪烁探测器 Scintillation Detector

Focusing type VS non-focusing

type

Focusing PMT

• Fast response time

• Time measurement

• Line or ring structure

Non-focusing PMT

• Large gain

• Eenergy measurement

• Shutter or box-grate

structure

Page 26: 闪烁探测器 Scintillation Detector

Response Spectrum

Page 27: 闪烁探测器 Scintillation Detector

Luminous Sensitivity

• Cathode luminous

sensitivity

• Anode luminous

sensitivity

Fi

S kk Lm/A

current of cathode

light flux

Fi

S AA Lm/A

current of aode

light flux

Page 28: 闪烁探测器 Scintillation Detector

Gain

dynodefirst by the gathered electrons ofNumber

anodeby collected electrons ofNumber M

86 10~10n

K

A

K

A gi

i

S

SM

electron transport efficiency between dynodes

Page 29: 闪烁探测器 Scintillation Detector

Dark Current and Noise

• Thermal emission

• Ionization or excitation of residual gas

• Point discharge or current leakage

Page 30: 闪烁探测器 Scintillation Detector

Parameter of Noise and

Dark Current

• Noise energy equivalent

Een=Ven*Eγ/Vγ

• Dark current of anode

its average value of noise pulses, usually 10-6

~ 10-10 A

Ven: discrimination voltage at 50 cps

Page 31: 闪烁探测器 Scintillation Detector

Rise Time and Transit Time

• Rise time

The time it takes that PMT output current increase from 10% to 90% of maximum.

• Transit time

The average time it takes that one electron from cathode to anode.

Page 32: 闪烁探测器 Scintillation Detector

Stability

• short-time stability

start to measure 30 minutes after power on.

• long-time stability

has connection with temperature, material

and technology.

Page 33: 闪烁探测器 Scintillation Detector

Usage of PMT

• keep out of light

• supply correct H.V.

• suitable divider resistance

• add parallel capacitance between last

dynodes and anodes.

Page 34: 闪烁探测器 Scintillation Detector

Signal Output of PMT

Page 35: 闪烁探测器 Scintillation Detector

Ia Ik

Page 36: 闪烁探测器 Scintillation Detector

Ia

Equivalent output circuit

Page 37: 闪烁探测器 Scintillation Detector

入R//RR L0

eCapacitanc dDistribute

CCC 入'

0

Page 38: 闪烁探测器 Scintillation Detector

eMTYEQ ph

Charge Output

• e: unit charge

• M: multiplication factor of PMT

• T: efficiency from photons to electrons collected by the first dynode.

• Yph: light yield

• E: energy loss of incident particles in scintillator

EQ

Page 39: 闪烁探测器 Scintillation Detector

Current Output

• photon number emitted by scintillator in

unit time:

• electron number collected by the first

dynode in unit time

tphe

ntn

tph

e eTn

tn

decay time of

scintillator

Page 40: 闪烁探测器 Scintillation Detector

etArea eM

)(tp

2et

1et

3et

eMt

FWHM

The moment that one photoelectron

achieves the first dynode

The moment that each multiplied

electron achieves anode

current pulse caused by

single photoelectron

Page 41: 闪烁探测器 Scintillation Detector

tdtpe

TntI

t ttph

0

)(

tph

e eTn

tn

Current Pulse of One

Scintillation

etteMtp if

tdtteMe

TntI

t

e

ttph

0

)()(

then

Page 42: 闪烁探测器 Scintillation Detector

ett

ett

tI

t

et

Page 43: 闪烁探测器 Scintillation Detector

Voltage Pulse

t

CRtCRt

tdetIC

etV

0

/

0

/

00

00

dt

tdVC

R

tVtI

)()(0

0

/)( tphe

eMTntI

eMTnQ ph

//

00

00

0

00

)()( tCRt ee

CR

CR

C

QtV

Page 44: 闪烁探测器 Scintillation Detector

00CR

tCR

t

eeC

QtV 00

0

//

00

00

0

00

)()( tCRt ee

CR

CR

C

QtV

00CR

0000

0

CRtt

eeCR

C

QtV

Page 45: 闪烁探测器 Scintillation Detector

45

25/00 CR

5.2/00 CR

400 CR

4000 CR

40000 CR

= 250ns,C0=1pF R0:10K,100K,1M,10M,100M

Page 46: 闪烁探测器 Scintillation Detector

5.2/00 CR

00CR

200 CR

400 CR

=250ns,R0=100K, C0:1pF,2.5pF,5pF,10pF

Page 47: 闪烁探测器 Scintillation Detector

Output Fluctuate of PMT

MTnMnn pheA

ph

nn

vph

12 Poisson

distribution

Tnn phe Tnn phe

ne

112

Mnn eA

222 1111

M

e

Mee

nnnnA

Mnn eA

Page 48: 闪烁探测器 Scintillation Detector

1

1

nM

1

111.......

11111

1

1

1

2

111

2

nM

22 11

M

e

nnA

1

11

1

1

Tnph

1

11

1

1

Tn ph

h

h

E

E

Anh 36.236.2

1

11

136.2

1

Tnph

phph

n

TTph

nnn

vvTn

vph

A

1)1(

1

11

12

22

1

2

Page 49: 闪烁探测器 Scintillation Detector

Micro Channel Plate

Page 50: 闪烁探测器 Scintillation Detector

Avalanche Photodiode(APD)

APD is a kind of diode the PN junction of which is light sensitive.

Page 51: 闪烁探测器 Scintillation Detector

Various APD device

• gain 102~103,sensitive

for temperature

• small volume

• suitable for MRI/PET

imaging system(NOT

infected by magnetic

field)

Page 52: 闪烁探测器 Scintillation Detector

Silicon Photomultiplier——

SiPM

• Proposed by Russian in 1990's,a lot of

APD operating in Geiger mode are

collected in parallel with a common anode.

Page 53: 闪烁探测器 Scintillation Detector

Advantage of SiPM

• High gain(105~106, as

large as PMT)

• Low operating voltage

(<100V)

• Low power consumption

• tiny volume

• high efficiency

• not sensitive for magnetic

field

• easy to form large array

For each PAD unit

occupies only hundreds

of μm2,it could contian

thousands of APD unit in

1mm2 aera!

Page 54: 闪烁探测器 Scintillation Detector

SCINTILLATION SPECTRAMETER

OF SINGLE CRYSTAL

Page 55: 闪烁探测器 Scintillation Detector

Configuration of Scintillation

Spectrometer

Scintillator Pre-

amplifier PMT Divider

H.V. L.V.

Linear

Amplifier

MCA

SCA

Scaler

Page 56: 闪烁探测器 Scintillation Detector

Pulse Amplitude Spectrum

Energy Spectrum

E

dE

dN

Page 57: 闪烁探测器 Scintillation Detector

Small Size Crystal (<1cm)

ePhotoelectric absorption

e

escaped scattered photon

Single Compton scattering e

eescaped photons produced by annihilation pair

production

Page 58: 闪烁探测器 Scintillation Detector

E

dE

dN

E

dE

dN

2

02 cmhv

2

02 cmhv hv

hv

photoelectric peek (total energy peak)

Compton

plateau

Compton

edge

Compton

plateau double escape peak

2

02 cmhv

photoelectric peek

(total energy peak)

Page 59: 闪烁探测器 Scintillation Detector

Infinite Size Crystal

photoelectric

absorption e

Compton

scattering

ee

Pair production

e

e

eeE

dE

dN

hv

total-energy peak

Page 60: 闪烁探测器 Scintillation Detector

Middle Size Crystal

e

photoelectric absorption

e

escaped photons after multiple scattering

Compton

scattering

ee

single escaped photon produced by annihilation

Pair production

e

e

e

Page 61: 闪烁探测器 Scintillation Detector

2

02 cmhv

2

02 cmhv

hv

hv

photoelectirc peak (total-energy peak)

multiple Compton

scattering

E

dE

dN

E

dE

dN

2

0cmhv

single escape peak

2

02 cmhv

photoelectric peak (total-energy peak)

multiple

Compton

scattering

double escape peak

Page 62: 闪烁探测器 Scintillation Detector

E

dE

dN

MeV511.0

annihilation

peak

Backscattering

peak

characteristic

X-ray peak

characteristic X-ray

photoelectric absorption

Compton scatter

annihilation photon ③

MeV2.0

Page 63: 闪烁探测器 Scintillation Detector

Example of Measured

Energy Spectrum

Page 64: 闪烁探测器 Scintillation Detector

Performance of Scintillation

Spectrometer

• Response Function

pulse amplitude spectrum of a certain

monoenergetic γ ray

• Energy resolution

%100b

a

Page 65: 闪烁探测器 Scintillation Detector

1

11

136.2

1

en

photoelectrons'number collected by D1 in one

scintillation

multiplication factor of D1

h

h

E

E

Anh 36.236.2

1

1136.2

1E

se

sn

ELet

Average energy needed to produce one photoelectron collected by D1。

Page 66: 闪烁探测器 Scintillation Detector

Discussion

• ne=nph·T, nph↑η↓

• δ1↑, η↓

• The stability of H.V.

• Channel width

nbaVM 0

7nb 0

07V

V

M

M

2

28.01h

channel width

FWHM

Page 67: 闪烁探测器 Scintillation Detector

Performance of Scintillation

Spectrometer • Energy linearity

light yield varies with energy of electron.

• Detection efficiency

size(thickness) and Z,ρ of crystal

• Resolving time

RC constant of output circuit and decay time of crystal

• Time lag and Time resolution

electron transit time and its dispersing

• Stability

determined by PMT's stability

0EChGE

Page 68: 闪烁探测器 Scintillation Detector

Homework

• 1,2,3,4,5,6,8,9,10