Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo...

30
WORKROOMS Journal Nº1 – July 2013 This is the title of the work, must be in English. Este es un trabajo ficticio y sin. Times New Roman 12 pp and Bold Rico-Secades, Manuel (http://orcid.org/000-0002-5372-0330) Abstract.- The maximum number of words allowed in the abstract are 250. Tables and figures are not allowed. In the authors section (below the title) put first surname and the name. Use international ORCID reference to identify authors. Use Times New Roman 9pp and cursive. Index Terms.- List of key words in English. For example: Lighting Smart Grid, Street Lighting, LED lighting, Energy Storage, Smart Cities, Staggered arrangement Affiliation: All authors are from EPI Gijón. Electrical Engineering Department. Campus de Viesques- Building 3 – ES-33204 - GIJON – ASTURIAS – SPAIN. E-mail of authors: Rico-Secades M. is the corresponding author ([email protected]), WR-2013-00-pag. 1

Transcript of Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo...

Page 1: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

This is the title of the work, must be in English. Este es un trabajo ficticio y sin. Times

New Roman 12 pp and Bold

Rico-Secades, Manuel (http://orcid.org/000-0002-5372-0330)

Abstract.- The maximum number of words allowed in the abstract are 250. Tables and figures are not allowed. In the

authors section (below the title) put first surname and the name. Use international ORCID reference to identify authors.

Use Times New Roman 9pp and cursive.

Index Terms.- List of key words in English. For example: Lighting Smart Grid, Street Lighting, LED lighting, Energy

Storage, Smart Cities, Staggered arrangement

Affiliation: All authors are from EPI Gijón. Electrical Engineering Department. Campus de Viesques- Building 3 – ES-

33204 - GIJON – ASTURIAS – SPAIN.

E-mail of authors: Rico-Secades M. is the corresponding author ([email protected]),

WR-2013-00-pag. 1

Page 2: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

I. INTRODUCTION

GENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una

columna y a doble espacio para facilitar la lectura del documento. El tamaño está limitado a 20 páginas por

artículo.

Recomendamos que el trabajo se haga en inglés (aunque está permitida la presentación en Español), en su

defecto procurar utilizar la nomenclatura y denominaciones más internacionales posibles y/o introducir la

denominación técnica equivalente en lengua inglesa.

Procurar escribir en estilo indirecto evitando el uso de frases de construcción gramatical farragosas.

Recomendamos que el cuerpo del artículo tenga una introducción con la descripción del problema a resolver y

el estado del arte de la temática del trabajo.

El trabajo tendrá también una parte teórica, con cálculos, método de diseño, etc y también una parte práctica,

con resultados experimentales, un ejemplo de diseño, resultados obtenidos, etc.

Acabaremos el trabajo con unas conclusiones, con una breve panorámica de lo que se ha hecho y las

conclusiones obtenidas.

Añadir siempre unos agradecimientos, indicando en qué contexto está realizado el trabajo, la fuente de

financiación que lo ha permitido y las personas, empresas y entidades que han apoyado que fuera posible.

Añadir todas las referencias utilizadas en el trabajo, libros, artículos, páginas web, datasheets, etc.

Si hay un desarrollo matemático complejo y farragoso o unas tablas de resultados complejas recomendamos

añadirlas como anexo al final del trabajo.

WR-2013-00-pag. 2

Page 3: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

ECUACIONES: Usar el editor de ecuaciones del Word. NO ESCRIBIR LAS ECUACIONES

DIRECTAMENTE SOBRE EL WORD. Las ecuaciones deben de estar numeradas (1), (2),…. Para hacer

referencia a ellas en el texto.

f ( x )=∫t

45

FIGURAS: Las figuras deben de ser originales. Caso de utilizar una figura externa, es obligatorio citar la

fuente y añadirla en la lista de referencias haciendo mención a ella. Las figuras deben de estar numeradas:

Fig. 1.-, Fig. 2.-,….. y debe de tener pie explicativo de figura.

NO SE PUEDE DIBUJAR LAS FIGURAS SOBRE EL WORD. Las figuras deben de realizarse aparte con

un programa de dibujo e insertar como imagen. Procurar poner las figuras en baja resolución y si se puede

utilizar solo blanco y negro. Las figuras deben ser livianas, recomendamos utilizar un capturador de pantalla,

para reducir la resolución al mínimo indispensable para que se vea correctamente en una pantalla de

ordenador convencional Recomendamos formatos como png, jpg o gif para las figuras. Todos los trabajos

serán convertidos a pdf para su publicación, verificar que la conversión se puede realizar correctamente.

TABLAS: Las tablas insertarlas como figuras o utilizar la utilidad de tablas del Word. Las tablas deben de

estar numeradas: Table 1.- , Table 2.- …..y deben de tener pie explicativo.

REFERENCIAS: Utilizar el DOI de todas las publicaciones que se utilicen como referencia. Poner autor,

titulo, revista, año. Si es un libro poner autor, titulo, editorial, isbn y año. Si es posible identificar a todos los

autores con su ORCID. Las referencias deben de estar numeradas [1], [2],…. Para hacer referencias a ellas en

el texto.

Lo que sigue a continuación es un artículo ficticio de iluminación, a modo de ejemplo para disponer de

WR-2013-00-pag. 3

Page 4: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

plantillas y modelos para figuras, ecuaciones y tablas. No es un trabajo válido, pero puede utilizarse como

referencia en lo relativo a aspectos recomendados para la presentación de los trabajos.

Todo lo que está de aquí en adelante es ficticio.

Lighting Systems are suffering an important evolution, moving to Lighting Smart Grids (LSG) and

introducing new capabilities and new services to citizens [1]. A correct lighting system design considering all

the advantages of power LED is a fundamental task in order to achieve high energy efficiency levels and

provide lighting regulation capability, introducing flexibility without affecting quality of Illuminance (E) and

uniform light levels in the street. New concepts about LED drivers can be found in technical literature,

thermal studies, applications for street lighting and dimming strategies [2][3][4] [5][6][7] [8][9][10] . Works

on topics about efficiency of drivers and Power LEDs are growing continuously. LEDs are directional

lighting elements more powerful day by day. Design of lamps using this elements are completely different

from the previously designed ones, it is possible to guide the light where required and with the adequate

intensity to match specification. Also individual regulation of each lighting point can be easily implemented.

This works deals with the question: What is the correct way to conduct these new designs?

This paper focus on street lighting with staggered arrangement usual in urban lighting which is moving to

Smart City concepts. The question is: What is the correct way to design a lighting system based on LED to

energy efficiently and introducing flexibility and additional possibilities? This question is planned to be

solved in this work. A proposed target region has been proposed and over this region a design methodology

thinking about LED flexibility has been established.

II.DESCRIBING TARGET STREET LIGHTING SCENARY.

Figure 1 shows the typical structure of a Staggered Lighting System. Dimension of the road is denoted as R

and sidewalk wide is represented by S. The height of the Lamppost is marked as LP.

Road area has been divided in two symmetric regions (RL – Road Left and RR – Road Right) and similarly

WR-2013-00-pag. 4

Page 5: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

sidewalk has been divided in other two sector (SL-Sidewalk left and SR-Sidewalk Right). With the proposal

of this target’s geometry, staggered configuration can be easily implemented with two considerations: Perfect

matching for staggered arrangement and independent control of lighting level in road and sidewalk areas. The

flexibility of LED, must be exploited in the best way possible.

The lateral dimension H of the target region is chosen in staggered designs between 1 to 2 times the heights of

the lamppost (LP). In a typical specification for a street lighting design a specified Illuminace (E) level in lux

is the goal (e.g. E target of 25 lx) and as uniform as possible over the target region and also using the lowest

power as possible. Se ha preparado un marco para insertar las figuras que incluye la imagen y el pie de figura.

III. THEORETICAL DESIGN. PROPOSED METHODOLGY.

The first step in the work is to define, using a parametric description, the target area in order to calculate all

photometric values according to the requirements.

WR-2013-00-pag. 5

ME GUSTA

Fig. 1. Street lighting in staggered arrangement. Target region, nomenclature and basic dimensions.

Page 6: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

The border of the target region marked over floor level and using as parameter the angle Ω has been obtained

for all the lines in the border of the target region. Angle Ω is chosen as the basic parameter to moving across

the target region, and it has been defined to move counterclockwise from x axis. (See figure 2). Using this

reference equations for all the borders of the target region have been mathematically obtained:

Region RL: (0o ≤ Ω ≤ 90o)

DMAX RL(Ω )= H⋅R

H+R⋅tan( π180

⋅Ω)⋅√1+( tan( π

180⋅Ω))

2

(1)

Region SL1: (90o ≤ Ω ≤ ΩL1)

DMAX SL 1 (Ω )= H

cos ( π180

⋅(Ω−90o))(2)

Region SL2: (ΩL1 ≤ Ω ≤ 180o)

DMAX SL 2 (Ω )= S

cos ( π180

⋅(180o−Ω))(3)

With:

WR-2013-00-pag. 6

x

y

RL

SL1

SL2

SR2

SR1

RR

Ω

ΩL1

360º-ΩL1

(+R, 0)

(0, -H)

(0, +H)

(-S, 0)

DMAX

Fig. 2. Target region over xy coordinate system showing the parametric angle (Ω) used in the study and distance to the border of the target region market over floor level (DMAX).

Page 7: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

ΩL1=90o+180o

π⋅a tan( S

H )(4)

The border of the symmetric regions can be obtained easily from previous expressions using the

complementary angle (360o- Ω), that is to say:

Region SR2: (180 o ΩL1 ≤ Ω ≤ 360o- ΩL1)

DMAX SR2 (Ω )=DMAX SL 2 (360o−Ω)(5)

Region SR1: (360o- ΩL1 ≤ Ω ≤ 270o)

DMAX SR1 (Ω )=DMAX SL 1 (360o−Ω )(6)

Region RR: (270o≤ Ω≤360o)

DMAX RR(Ω )=DMAX RL

(360o−Ω )(6)

Once geometric dimensions of target area have been defined, relationships between distance from target point

to the lamp (d), the light angle (β) and distance of the target point from lamppost over floor (D) can be easily

obtained according to basic geometry shown in figure 3:

β MAX=a tan (DMAX

LP)

(7)

D=LP⋅tan( π180o⋅β)

(8)

d= LP

cos( π180o⋅β)

(9)

The maximum light angle (βMAX) required in order to cover the target region has been obtained for any value

of the parameter Ω, and it is represented in a polar diagram in figure 4.

WR-2013-00-pag. 7

Page 8: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

According βMAX values: near, middle and far regions have been introduced in the study looking for establish

a design procedure with three light angles in each direction (see figure 5 for details). Any other proposed

strategy can be also established considering angle β versus distance D variation.

Over de polar diagram, the target region has been cut into 30 degree bends and denoted using the central

angle and also the zone reference letters. (i.e. RL45 region means central angle of 45o in the zone RL). Using

this simple procedure referencing to different areas over the target region can be easily done. (i.e. RR285-

WR-2013-00-pag. 8

LP

z

βMAX

β

DMAXD

d

dMAX

β

oLPD180

tan

o

LPd

180cos

dLPdD oo

2

180tan1

180

Fig. 3. Geometric references and basic relationships. Light angle (β), distance lamp to target point over floor (d) and distance of target point to lamppost over floor (D).

0

30

60

90

120

150

180

210

240

270

300

330

0

20

40

60

MAX

MAX32

MAX31

near

middle

far

Ω [degrees]

reesMAX

deg

RL15

RL45

RL75SL105

SL135

SL165

SR195

SR225

SR255RR285

RR315

RR345

Fig. 4. Maximum light angle (βMAX) required with regions nomenclature (Dates from Oviedo City street lamps: R=9m, S=2m, LP=5m and H=2.LP=10m).

Page 9: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

middle). See experimental section for details of use of this regions applied to different design strategies.

Knowing distance d, angle β and target Illuminance (E) level required in each target point, Luminous

Intensity (I, in candle) required in the lamp has been also obtained. This a basic information in order to

specify the radiation diagram in the lighting system under design.

I= E⋅d2

cos ( π1800⋅β)

(10)

Radiation diagram (I, β) can be obtained for each target point inside the target region. Critical design points

appear in SL1 and SR1 regions and depending on the wide of the road (R), point with Ω = 0o, could be

another critical point. On the other hand, lighting level required in SL2, SR2 regions and in general near areas

can be easily obtained with lower Luminous Intensity (I) levels required.

In order to obtain the Total Luminous Flux () or the Total Power (P) required in the application, to cover

the whole target area or to be used with independent modules established in the design strategy, two important

elements have been introduced: The concepts of Angular Flux Density (β) and Angular Power Density

(Pβ).

WR-2013-00-pag. 9

LP

z

MAX61

MAX21

MAX65

near middle far

MAX

MAX31

Fig. 5. Near, middle and far regions according maximum light angle (βMAX).

Page 10: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

A differential of Area (Figure 6) has been used to characterize the above mentioned parameters. Relationship

with target region dimensions and with design parameters β and Ω have been obtained and presented in

equation 11.

WR-2013-00-pag. 10

0

30

60

90

120

150

180

210

240

270

300

330

0

2

4

6

8

Ω [degrees]

candleI MAX65

MAX

MAX32

2MAX

6MAX

3MAX

Fig. 5. Luminous Intensity (I) required in the target region. Radiation Diagram (I, β) required in the LED lamp under design. (Dates from Oviedo City street lamps: R=9m, S=2m, LP=5m and H=2.LP=10m).

LP

Ω

β

z

x

D

dD

d

dArea

Fig. 6. Differential Area of target region used during design procedure.

Page 11: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

dArea= π2

(180o )2⋅LP2⋅tan( π

180o⋅β)⋅[1+( tan( π180o⋅β))

2]⋅dβ⋅dΩ(11)

For simplicity, equation 11 can be written as:

dArea=G ( β )⋅dβ⋅d Ω (12)

Where G(β) is a fundamental function in the design procedure implemented in this work (13):

G ( β )= π 2

(180o )2⋅LP2⋅tan( π

180o⋅β)⋅[1+( tan( π180o⋅β ))

2 ](13)

As verification, the total area of the target region has been obtained:

Data from Oviedo City street lamps: R=9m, S=2m, LP=5m and H=2.LP=10m implies area of the target

region equal to 130 m2 and verified in equation (14).

Area=∫0o

360o

( ∫0

βMAX (Ω)

G ( β )⋅dβ )¿dΩ = 130 m2

(14)

Next, differential of Solid Angle (SA) from lamp point of view is then obtained:

dSA=dAread2

(15)

Considering expression of Luminous Intensity (I) obtained in figure (10) and its relationship with

differential of Luminous Flux () (see equation 16), an interesting and useful expression for parameter d

has been obtained (17).

dΦ=I⋅dSA (16)

And then:

dΦ=E⋅ G( β )

cos( π180

⋅β )⋅dβ⋅d Ω

(17)

Integration in different ways of equation (17) inside the target region allow implementation of different design

strategies. The concept of Angular Flux Density (β) has been introduced. Units of β are Lm/(degree)2. This

parameter depends only on both LP parameter from target area geometry and light angle β. (See equation 18).

WR-2013-00-pag. 11

Page 12: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

Considering Luminous Efficacy of LED used (L in Lm/W), the Efficiency of the Electronic LED drivers (E

in p.u.) and the Optical Efficiency of the lamp fixture (O in p.u.), the additional concept of Angular Power

Density (Pβ) has been also introduced in similar way. Units of Pβ are W/(degree)2. (See equation 19)

Φβ=E⋅ G( β )

cos ( π180

⋅β )(18)

Pβ=E⋅G( β )

cos ( π180

⋅β )⋅ηL⋅ηE⋅ηO(19)

Both concepts seek to simplify the designs because can be used to evaluate watts or lumens required in any

zone inside the target region, between two light angles or in the whole region under study obtaining lamp

power or luminous flux.

The profiles of Pβ or β are extremely interesting in LED lighting design because both shown the lumens or

watts profile required in the lamp with different light angles. Figure 7 shows this evaluation for a β MAX angle

of 60o with emphasis in near, middle and far regions. Power or lumens required in the lamp grows

exponentially and must be taken into account in designs.

The integration of the Angular Flux Density (β) or Angular Power Density (Pβ) covering the complete

range from 0 to βMAX it is important and allows obtain the radiation profile of the lamp under design.

WR-2013-00-pag. 12

0 20 40 600

5

10

15

β [degrees]

2deg ree

mW

P

NEAR

MIDDLE

FAR

Fig. 7. Evaluation of the Angular Flux Density (β) for different light angles β. (LP= 5 m and βMAX

= 60o)

Page 13: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

Integration of β is shown in equation (20) and it has been plotted in the figure 8, for a specific design.

Φβ (0 , β MAX )= ∫0

βMAX (Ω )

Φβ⋅dβ(20)

Similarly, Integration of Pβ is shown in equation (21) and it has been plotted in figure 9, for a specific design.

Pβ (0 , βMAX )= ∫0

βMAX (Ω )

Pβ⋅dβ(21)

Integration of Angular Flux Density (β) over all the range of Ω (22) is the way to obtain the Total

Luminous Flux (TOTAL) of the lamp.

ΦTOTAL=∫0o

360o

Φβ [0 , βMAX (Ω)] ¿d Ω(22)

Evaluating this value applied to the target region in the example (Data from Oviedo City street lamps: R=9m,

S=2m, LP=5m and H=2.LP=10m), the Total Luminous Flux (TOTAL) required from the lamp under design is

of 3,250 Lm.

WR-2013-00-pag. 13

0

30

60

90

120

150

180

210

240

270

300

330

0

10

20

Ω [degrees]

reelumen

MAX

deg

,0

Fig. 8. Evaluation of the Angular Flux Density (β) over a line Ω inside the target region. (Data from Oviedo City street lamps: R=9m, S=2m, LP=5m and H=2.LP=10m).

Page 14: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

Integration of Angular Power Density (Pβ) over all the range of Ω (23) is the way to obtain the total power

required from the lamp.

PTOTAL=∫0o

360o

Pβ [0 , βMAX (Ω)] ¿d Ω(23)

Evaluating this value according the target region in the example (Data from Oviedo City street lamps: R=9m,

S=2m, LP=5m and H=2.LP=10m), the Total Power (PTOTAL) required for the lamp under design is 38.69 W

(with L=150 Lm/W, E = 0.9 p.u. and O = 0.7 p.u.).

IV. PRACTICAL APPLICATION

Concepts of Angular Power Density (Pβ) and Angular Flux Density (β) previously introduced a variety of

design strategies. Moving again to figure 4 two modular designs have been proposed in order to cover angular

ranges of 60o (design I) and 30o (design II) in Ω parameter (6 sectors or 12 sectors to cover the target region,

WR-2013-00-pag. 14

0

30

60

90

120

150

180

210

240

270

300

330

0

0.1

0.2

Ω [degrees]

reeW

P MAX

deg

,0

Fig. 9. Evaluation of the Angular Power Density (Pβ) over a line Ω inside the target region. (Data from Oviedo City street lamps: R=9m, S=2m, LP=5m and H=2.LP=10m).

Page 15: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

see figure 10 for details) and three different levels according βMAX value (near, middle and far regions).

Obviously LED allows a perfect fit of light angles β to target region using any number of discrete angles.

Figure 10 shows the basic idea of the proposed design methodology. It is important to emphasize that any

other proposal about light distribution can be analyzed using the tools proposed in this paper. Modularity and

directionality of Power LED allows different strategies looking for the efficient use of the energy in order to

satisfy light level and uniformity required. Evaluation of power required in each independent LED module of

the lamp have been obtained in the particular case of both proposed designs (I and II).

WR-2013-00-pag. 15

LP

Ω

z

xMAX

31

MAX32

MAX

near

middle

farMAX

31

Fig. 10. Modular design with sectors of Ω and three level in the light angle.

Design I: 6 sectors (Ω=60º)

0

30

60

90

120

150

210

240

270

300

330

0

5

10

DMAX[m]

Ω [degrees]

RL15

RL45

RL75

SL105

SL135

SL165

SR195

SR225

SR255

RR285

RR315

RR345

Design II: 12 sectors (Ω=30º)

Fig. 11. Proposed modular designs I and II.

Page 16: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

Summary of calculations have been included in table I for Ω=60o design and table II for Ω=30o design.

Several considerations must be done from the proposed prototypes.

a).- Power required in SL135 and SL165 zones are very low and, simultaneously, the light angle (β)

required is lower than 30o, then only one LED module has been proposed to cover these regions in both

designs. In general, power required in near region is also very low (lower than 0.3- 0.5 W in each sector).

b).- Similarly, power required in middle region is also reduced around 1 W in 30o and 2 W in 60o designs.

c).- Higher power levels appear in far regions, close to 4 W in critical points.

d) The Total Power required for the lamp is 38.690 W, distributed in 26.786 W in the road area and 11.905

W in the sidewalk area.

c).- Using dimming capability and a good optical design, matching of light level required with an excellent

uniformity can be obtained with the additional advantage of independent dimming capability over the road

side and over the sidewalk side.

WR-2013-00-pag. 16

SECTOR Ω [Degree]

βMAX[Degree]

βMAX/6[Degree]

βMAX/3[Degree]

βMAX/2[Degree]

5.βMAX/6[Degree]

PTOTAL[W]

PNEAR[W]

PMIDDLE[W]

PFAR[W]

RL15+RR345 0o 60.945o 10.158o 20.315o - 50.788o 9.159 0.457 1.895 6.806

RL45+RL75 60o 54.595o 9.099o 18.198o - 45.496o 8.813 0.445 1.835 6.533

TOTAL ROAD 26.786

SL105+SL135 120o 38.660o 6.443o 12.887o - 32.217o 5.607 0.238 1.139 4.185

SL165+SR165 180o 21.801o - - 10.901o - 0.687 - - -

TOTAL SIDEWALK 11.901

Table I. Summary of proposed Ω=60o modular design I. (Data from Oviedo City street lamps: R=9m, S=2m, LP=5m and H=2.LP=10m).

SECTOR Ω [Degree]

βMAX[Degree]

βMAX/6[Degree]

βMAX/3[Degree]

βMAX/2[Degree]

5.βMAX/6[Degree]

PTOTAL[W]

PNEAR[W]

PMIDDLE[W]

PFAR[W]

RL15 15o 56.335o 9.389o 18.778o - 46.946o 4.580 0.229 0.948 3.403

RL45 45o 53.263o 8.877o 17.754o - 44.386o 3.579 0.202 0.805 2.572

RL75 75o 57.923o 9.654o 19.308o - 48.269o 5.234 0.234 1.030 3.961

TOTAL ROAD 26.786

SL105 105o 57.095o 9.516o 19.032o - 47.579o 4.920 0.220 0.933 3.767

SL135 135o 29.496o - - 14.748o - 0.687 - - -

SL165 165o 22.495o - - 11.247o - 0.344 - - -

TOTAL SIDEWALK 11.901

Table II. Summary of proposed Ω=30o modular design II. (Data from Oviedo City street lamps: R=9m, S=2m, LP=5m and H=2.LP=10m).

Page 17: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

A laboratory prototype has been built to validate Ω=60o design I proposed and take advantage of developped

design methodology combined with a flexible electronic design allowing to cover the requirements of optimal

light design over target region combined with powerful strategies of energy saving introduced in Lighting

Smart Grids schemes. A new design II with Ω=30o is now under development following the same rules and

will be presented in future works.

A Cree Xlamp MC-E LED has been used in the design, this Power LED has four individual LED inside of

each chip allowing a nominal power of 1 W in each LED (350 mA/LED) i.e. 4 W/module, allowing serial or

parallel connection of the internal LED according to the design needs (in the prototype two in parallel and two

in serial, see figure 13). With an optimal heatsink design nominal current can be also duplicated in each LED

(700 mA/LED or 2 W/LED) in case of future applications. Efficiency of this type of Power LED are

continuously growing, last year 130 Lm/W and now 170 Lm/W with a continuously changing technology.

This work has been done assuming a Luminous Efficiency in the LED modules of 150 Lm/W.

One chip module has been used for near region and two chip modules for middle and far regions ones.

Figures 12 and 13 show details of laboratory assembly using a custom made double side-PCB for each LED

module looking for an easy assembly over an aluminum support, allowing heatsink dissipation and angular

light angle required bending the support with the required β angle.

WR-2013-00-pag. 17

Fig. 12. Laboratory prototype for a Ω=60o sector.

Page 18: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

To electrically supply Power LED modules a low cost ZXLD1362 driver from ZETEX has been used. This

driver allows operation using an extremely flexible 18 to 36 DC bus and stabilized nominal current across the

LED of 1000 mA. An external resistance Rs has been used to personalize the nominal current in the module

to the required value. In figure 14, the Rs value used was 1/6 Ω is order to establish the nominal current in

the module to 600 mA or 300 mA in each LED (in general, 1/n Ω allows n.100 mA). A single PCB with three

LED drivers (near, middle and far regions) has been designed (see figure 15). Independent control of light

level required is easily obtained using these drivers under MCU control.

A control pin (ADJ) is used to dim the lamp between 0 and 100 % of nominal power established. A low cost

ARM-based 32-bit MCU from ST (STM32F051R8) has been used in order to implements the PWM control

in all drivers (A total of 18 independent LED drivers: 6 areas of Ω=60o with 3 light angles). MCU

WR-2013-00-pag. 18

THERMAL PAD

Fig. 13. Power LED module used in the prototype and detail of PCB design.

Fig. 14. LED driver design. Example with 300 mA in each LED. (3/4 W/LED or 3 W/module)

Page 19: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

incorporates ZigBee communications capability and full customization of light level required in each lighting

point. A powerful and flexible workbench has been built and allows verification of proposed design

methodologies.

Figures 15 and 16 shows several photos of the laboratory prototype under operation using all the elements

above described.

V. CONCLUSIONS

Lighting Systems are suffering an important evolution with the introduction of LED lighting capabilities

allowing new strategies of energy savings, incorporation of renewable energy sources and optionally a

bidirectional interconnection with the mains (AC grid or DC interconnection bus). Adaptability of light

WR-2013-00-pag. 19

Fig. 15. Laboratory prototype of a complete lamp (Ω=60o modular design I): Detail of LED drivers, ARM-based 32-bit MCU and ZigBee interface.

Fig. 16. Laboratory prototype of a complete lamp (Ω=60o modular design I): Different overviews.

Page 20: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

taking into account application’s geometric dimensions is one important requirement thinking in energy

efficiency.

This work keeps in mind the idea of new designs using the concept of sending the light in the correct direction

and with the required intensity. New lamps based on power LED must be designed in order to fit this

requirement and new tools and design procedures has been established in this way.

The work also consider the easy implementation capability of light level regulation, 0 to 100% as an

additional advantage to adequate light level requirements and also introducing dimming capability according

to external environmental conditions.

A complete methodology for street lighting with staggered arrangement and obtaining advantage of Power

LEDs possibilities has been presented and validated in this paper.

Two experimental design procedure according a real city geometry (City of Oviedo in Spain) have been

proposed in order to validate the introduced methodology, but tools described in this work allow different

design strategies in order to extract as much benefits as possible from LED advantages. The door is open to

further ideas and proposals according to the flexibility of LED devices with performances in continuous

growth.

VI. ACKNOWLEDGMENT

This work has been supported by “Ministerio de Educación y Ciencia” of the Spanish Government

(ENERLIGHT project- reference MICINN-10-DPI2010-15889) and (LITCITY project –reference ENE 2013-

41491-R). Acknowledge the assistance of the Workroom on Renewable Energy (WRE) collaboration of the

Engineering Polytechnic School of Gijon – Asturias - Spain (EPI-Gijon) in brainstorming and preparation of

prototypes.

REFERENCES

[1] M. Jaureguizar, D. Garcia-Llera, M. Rico-Secades, A.J. Calleja, E.L. Corominas. “Enerlight project:

Walking from electronic lighting systems to Lighting Smart Grid”. IEEE SmartMILE 2013 Conference.

December 2013. DOI :10.1109/SmartMILE.2013.6708166

WR-2013-00-pag. 20

Page 21: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

[2] Cardesin, J., Garcia-Llera, D.; Lopez-Corominas, E.; Calleja, A.J. ; Ribas, J. ; Gacio, D. “Low cost

intelligent LED driver for public Lighting Smart Grids “.IEEE SmartMILE 2013 Conference. December

2013. DOI: 10.1109/SmartMILE.2013.6708167

[3] Gacio, D., Alonso, J.M. ; Garcia, J. ; Garcia-Llera, D. ; Cardesin, J. “Study on passive self-equalization of

parallel-connected LED strings “.IEEE SmartMILE 2013 Conference. DOI:

10.1109/SmartMILE.2013.6708203

[4] Alvin, C., Chu, W. ; Ching-Hung Cheng ; Jyh-Tong Teng. “Thermal analysis of extruded aluminum fin

heat sink for LED cooling application “. IEEE Microsystems, Packaging, Assembly and Circuits Technology

Conference (IMPACT), 2011 6th International. DOI: 10.1109/IMPACT.2011.6117207

[5] Hui, S.Y.R, Huanting Chen ; Xuehui Tao. “An Extended Photoelectrothermal Theory for LED Systems: A

Tutorial From Device Characteristic to System Design for General Lighting”. Power Electronics, IEEE

Transactions on Volume:27 , Issue: 11. DOI: 10.1109/TPEL.2012.2188648

[6] Nan Chen, Chung, H.S.-H. “An LED Lamp Driver Compatible With Low- and High-Frequency Sources”.

Power Electronics, IEEE Transactions on Volume:28 , Issue: 5. DOI: 10.1109/TPEL.2012.2213098

[7] Rico-Secades, M., Calleja, A.J. ; Ribas, J. ; Corominas, E.L. ; Alonso, J.M. ; Cardesin, J. ; Garcia-Garcia,

J. “Evaluation of a low-cost permanent emergency lighting system based on high-efficiency LEDs”. Industry

Applications, IEEE Transactions on Volume:41 , Issue: 5. DOI: 10.1109/TIA.2005.853389

[8] Long, X., Liao, R. ; Zhou, J. “Development of street lighting system-based novel high-brightness LED

modules”. Optoelectronics, IET Volume:3 , Issue: 1. DOI: 10.1049/iet-opt:20070076

WR-2013-00-pag. 21

Page 22: Web viewGENERAL: Todo debe de estar escrito con letra Times New Roman de 10 ppt generalmente. Solo una columna y a doble espacio para facilitar la

WORKROOMS Journal Nº1 – July 2013

[9] de Melo, M.F., Vizzotto, W. ; Kirsten, A.L. ; Dalla Costa, M. ; Garcia, J. “Hybrid system of distributed

power generation and street lighting based on LEDs: Grid connection”. Power Electronics Conference

(COBEP), 2013 Brazilian. DOI: 10.1109/COBEP.2013.6785252

[10] Keitz H.A.E. “Light Calculations and Measurements”. N.V. Philips. 1974. ISBN: 84-283-0576-5

WR-2013-00-pag. 22