The Partition Function of ABJ Theory

Post on 25-Feb-2016

34 views 0 download

Tags:

description

Masaki Shigemori (KMI, Nagoya U). The Partition Function of ABJ Theory. with Hidetoshi Awata , Shinji Hirano, Keita Nii 1212.2966, 1303.xxxx. Amsterdam, 28 February 2013. Introduction. AdS 4 /CFT 3. Low E physics of M2-branes on Can tell us about M2 dynamics in principle (cf. ) - PowerPoint PPT Presentation

Transcript of The Partition Function of ABJ Theory

The Partition Function of ABJ

TheoryAmsterdam, 28 February

2013

Masaki Shigemori(KMI, Nagoya U)

with Hidetoshi Awata, Shinji Hirano, Keita Nii1212.2966, 1303.xxxx

Introduction

3

AdS4/CFT3

Chern-Simons-matter SCFT

(ABJM theory)

M-theory on

Type IIA on

=

,

Low E physics of M2-branes on Can tell us about M2 dynamics in principle (cf. ) More non-trivial example of AdS/CFT

4

ABJ theory Generalization of ABJM [Hosomichi-Lee3-Park, ABJ] CS-matter SCFT Low E dynamics of M2 and fractional M2 Dual to M on with 3-form

π‘ˆ (𝑁+𝑙 )π‘˜Γ—π‘ˆ (𝑁 )βˆ’π‘˜=π‘ˆ (𝑁 )π‘˜Γ—π‘ˆ (𝑁+π‘˜βˆ’π‘™ )βˆ’π‘˜Seiberg duality

dual to Vasiliev higher spin theory?

β€œABJ triality” [Chang+Minwalla+Sharma+Yin]

𝐻3 (𝑆7/β„€π‘˜ ,β„€ )=β„€π‘˜

5

Localization & ABJM Powerful technique in susy field theory

Reduces field theory path integral to matrix model Tool for precision holography ( corrections)

Application to ABJM [Kapustin+Willett+Yaakov] Large : reproduces

[Drukker+Marino+Putrov]

All pert. corrections [Fuji+Hirano+Moriyama][Marino+Putrov]

Wilson loops [Klemm+Marino+Schiereck+Soroush]

6

Rewrite ABJ MMin more tractable form

Fun to see how it works Interesting physics

emerges!

Goal: develop framework to study ABJ

ABJ: not as well-studied as ABJM;MM harder to handle

Outline &main results

8

ABJ theory CSM theory

Superconformal IIB picture

𝑁1 𝑁 2

𝐴1 , 𝐴2

𝐡1 ,𝐡2

D3

D3

NS5 5

9

Lagrangian

ABJ MM [Kapustin-Willett-Yaakov]

Partition function of ABJ theory on :vector multiplets

matter multiplets

10

Pert. treatment β€” easy Rigorous treatment β€” obstacle:

Strategyβ€œAnalytically continue” lens space () MM

𝑍 ABJ (𝑁1 ,𝑁 2 )π‘˜βˆΌπ‘ lens (𝑁1 ,βˆ’π‘ 2)π‘˜Perturbative relation: [Marino][Marino+Putrov]

Simple Gaussian integral Explicitly doable!

11

Expression for

π‘žβ‰‘π‘’βˆ’π‘”π‘ =π‘’βˆ’ 2πœ‹ π‘–π‘˜ ,𝑁≑𝑁1+𝑁2

: -Barnes G function(1βˆ’π‘ž )

12 𝑁 (π‘βˆ’ 1)

𝐺2 (𝑁+1 ;π‘ž)=βˆπ‘—=1

π‘βˆ’1

(1βˆ’π‘ž 𝑗 )π‘βˆ’ 𝑗

partition of into two sets

12

13

Now we analytically continue: 𝑁 2β†’βˆ’π‘ 2

It’s like knowing discrete data𝑛 !

and guessingΞ“ (βˆ’π‘§)

Analytically cont’d

, Analytic continuation has ambiguity

criterion: reproduce pert. expansion Non-convergent series β€” need regularization

-Pochhammer symbol:

14

: integral rep (1)

Finite β€œAgrees” with the

formal series Watson-Sommerfeld

transf in Regge theory

poles from

15

: integral rep (2)

Provides non-perturbative completion

Perturbative (P) poles from

Non-perturbative (NP) poles,

16

Comments (1)Well-defined for all No first-principle derivation;a posteriori justification:

Correctly reproduces pert. expansions

Seiberg duality Explicit checks for small

17

Comments (2) (ABJM) reduces to β€œmirror

expression”

Vanishes for

18

β€” Starting point for Fermi gas approach

β€” Agrees with ABJ conjecture

Details / Example

𝑍 lens

π‘žβ‰‘π‘’βˆ’π‘”π‘ =π‘’βˆ’ 2πœ‹ π‘–π‘˜ ,𝑁≑𝑁1+𝑁2

partition of into two sets

20

𝑁1=1

21

𝑁1=1

𝑆 (1 ,𝑁2)

22

How do we continue this ?Obstacles:1. What is

2. Sum range depends on

-Pochhammer & anal. cont.

23

For (π‘Ž )𝑛≑ (1βˆ’π‘Ž ) (1βˆ’π‘Žπ‘ž )β‹― (1βˆ’π‘Žπ‘žπ‘›βˆ’1 )=

(π‘Ž )∞(π‘Žπ‘žπ‘›)∞

.

For ,(π‘Ž )𝑧≑

(π‘Ž )∞(π‘Žπ‘žπ‘§ )∞

.

In particular,(π‘ž )βˆ’π‘›β‰‘

(π‘ž )∞(π‘ž1βˆ’π‘› )∞

=(1βˆ’π‘ž) (1βˆ’π‘ž2)β‹―

(1βˆ’π‘ž1βˆ’π‘›) (1βˆ’π‘ž2βˆ’π‘›)β‹― (1βˆ’π‘ž0 )β‹―=∞

Good for any Can extend sum range

Comments -hypergeometric function

Normalization𝑍 lens (1 ,𝑁2 )π‘˜=

1𝑁2 !

βˆ«β€¦ 𝑍 lens (1 ,βˆ’π‘ 2 )π‘˜=1

Ξ“ (1βˆ’π‘2)βˆ«β€¦

Need to continue β€œungauged” MM partition functionAlso need -prescription:

24

𝑍 ABJ (1 ,𝑁 2 )π‘˜

π‘΅πŸ=𝟏:

π‘΅πŸ=πŸβˆ‘π‘ =0

∞

(βˆ’1 )𝑠 1βˆ’π‘žπ‘ +1

1+π‘žπ‘ +1 =βˆ‘π‘ =0

∞

(βˆ’1 )𝑠[ 𝑠+12

π‘”π‘ βˆ’(𝑠+1 )3

24𝑔𝑠3+β‹― ]

βˆ‘π‘ =0

∞

(βˆ’1 )𝑠=12

𝑍 ABJ (1,1 )π‘˜=1

4βˆ¨π‘˜βˆ¨ΒΏΒΏ

π‘ž=π‘’βˆ’π‘”π‘ 

ΒΏ18 𝑔𝑠+

1192 𝑔𝑠

3+β‹―

Li𝑛 (𝑧 )=βˆ‘π‘˜=1

∞ π‘§π‘˜

π‘˜π‘›,Liβˆ’π‘› (βˆ’1 )=βˆ‘

π‘˜=1

∞

(βˆ’1 )𝑠𝑠𝑛

Reproduces pert. expn.of ABJ MM25

Perturbative expansion

26

Integral rep

Reproduces pert. expn.

27

A way to regularize the sum once and for all:

Poles at , residue

β€œ ”

But more!

Non-perturbative completion

28

: non-perturbative

poles at

𝑠=π‘˜2 βˆ’ 𝑗

𝑠=π‘˜βˆ’ 𝑗𝑗=1 ,…,𝑁2βˆ’1

zeros at

Integrand (anti)periodic

Integral = sum of pole residues in β€œfund. domain”

Contrib. fromboth P and NP poles

π‘˜2

π‘˜

𝑁 2βˆ’1𝑁 2βˆ’1β„œπ‘ 

ℑ𝑠

𝑂

𝑠

NPpolesP polesNPzeros

fund. domain

Contour prescription

29

π’ŒπŸβˆ’π‘΅πŸ+𝟏β‰₯𝟎

π’ŒπŸβˆ’π‘΅πŸ+𝟏<𝟎

Continuity in fixes prescription Checked against original ABJ MM integral for

π‘˜2

π‘˜

𝑁 2βˆ’1𝑁 2βˆ’1

π‘‚βˆ’πœ–

𝑠

π‘˜2

π‘˜π‘˜2 βˆ’π‘ 2+1βˆ’πœ– migrat

e

𝑠

large enough:

smaller:

𝑁1β‰₯2

30

Similar to Guiding principle: reproduce pert. expn.

Multiple -hypergeometric functions appear

Seiberg duality

31

𝑁

𝑙

NS5 5

π‘ˆ (𝑁+𝑙 )π‘˜Γ—π‘ˆ (𝑁 )βˆ’π‘˜=π‘ˆ (𝑁 )π‘˜Γ—π‘ˆ (𝑁+ΒΏ π‘˜βˆ¨βˆ’π‘™ )βˆ’π‘˜

𝑁

ΒΏπ‘˜βˆ¨βˆ’π‘™

NS5 5

Cf. [Kapustin-Willett-Yaakov]

Passed perturbative test.What about non-perturbative one?

Seiberg duality:

32

π‘ˆ (1 )π‘˜Γ—π‘ˆ (𝑁 2 )βˆ’π‘˜=π‘ˆ (1 )βˆ’π‘˜Γ—π‘ˆ (2+|π‘˜|βˆ’π‘2 )π‘˜Partition function:

duality inv. byβ€œlevel-rank duality”

Odd

33

(original)

Integrand identical (up to shift), and so is integral

P and NP poles interchanged

52

5𝑂

(dual)

52

5𝑂

52

5𝑂

52

5𝑂

Even

34

(original)

(dual)

2 4𝑂 2 4𝑂

2 4𝑂2 4𝑂

Integrand and thus integral are identical P and NP poles interchanged, modulo

ambiguity

Conclusions

36

Conclusions Exact expression for lens space MM Analytic continuation: Got expression i.t.o. -dim integral,

generalizing β€œmirror description” for ABJM

Perturbative expansion agrees Passed non-perturbative check:

Seiberg duality (

37

Future directions Make every step well-defined;

understand -hypergeom More general theory (necklace quiver) Wilson line [Awata+Hirano+Nii+MS] Fermi gas [Nagoya+Geneva] Relation to Vasiliev’s higher spin

theory Toward membrane dynamics?

Thanks!