Termochemical 2 biomass processing · 2020. 11. 24. · Biorefin. 2012, 6 (1), 73−87. Capital...

Post on 15-Aug-2021

1 views 0 download

Transcript of Termochemical 2 biomass processing · 2020. 11. 24. · Biorefin. 2012, 6 (1), 73−87. Capital...

1

Termochemical biomass processing

Buenos Aires (2013)

Dr. Mariano Martín Assistant professor

University of Salamanca (Spain)

H2

H2

H2

H2

Overview

2

Introduction Energy in the world Biomass as raw material Approach to process synthesis Gasification based Hydrogen from switchgrass Bioethanol from switchgrass (2nd generation) Via gasification FT diesel from switchgrass Pyrolysis based Conclusions

Introduction

3

Energy in the world: Contribution of renewables[1]

[1] BP annual report

4

Alternatives

Primary building blocks

BioOil

Gasification

Pyrolysis

Gasification

GASIFICATION of

Lignocellulosic materials

5

Biomass (Energy) CO + H2

Gasification

6

Gasification

Uses Air Two chambers Higher conc. HBC

Requires O2

One chamber High pressure Lower conc. HBC

Martín, M., Grossmann, I.E. (2011) AIChE J. DOI: 10.1002/aic.12544

CO2

CO H2

H2O CH4

C2H2

C2H4

Reforming

7

Steam reforming Higher hydrogen production Endothermic reaction. Lower energy available within the process

Partial oxidation Lower hydrogen production Exothermic reaction. More energy within the process

Gasification

1) Steam reforming 2) Partial oxidation 3) Autoreforming 4) Dry reforming (CO2)

Martín, M., Grossmann, I.E. (2011) AIChE J. DOI: 10.1002/aic.12544

Clean up

8

Water

Gasification

Solids Ammonia

Martín, M., Grossmann, I.E. (2011) AIChE J. DOI: 10.1002/aic.12544

Water Gas Shift Reactor

9 Ji, P., Feng, W., & Chen, B. (2009a). Chem. Eng. Sci. 64, 582–592

H2O + CO H2+CO2

Production of HYDROGEN from Switchgrass

Gasification - Hydrogen

Martín, M., Grossmann, I.E. doi:10.1016/j.compchemeng.2011.03.002

Gasification - Hydrogen

Optimal flowsheet for the production of HYDROGEN from Switchgrass

10

$0.68/kg, $148MM

Martín, M., Grossmann, I.E. doi:10.1016/j.compchemeng.2011.03.002

TARGET (DOE) $1.68/kg

Mathematical programming techniques Superstructure optimization

CO/H2 Adj.

WGSR

H2 PSA

11

Water

Ratio H2/CO from 1:1 Ethanol 1.7-2: FT 2: Methanol

Gasification

H2

Martín, M., Grossmann, I.E. (2011) AIChE J. DOI: 10.1002/aic.12544

Sour gases removal CO2 & H2S

MEA Removal of CO2 and H2S

PSA Removal of CO2

Membrane Porous to CO2

12

Gasification

Martín, M., Grossmann, I.E. (2011) AIChE J. DOI: 10.1002/aic.12544

Other methods -Rectisol (p>50bar) -CaO + CO2 CaCO3

Fermentation

3CO+3H2 CH3CH2OH + CO2

13

Gasification- Bioethanol

Huge energy consumption

Production of BIOETHANOL via gasification of Switchgrass

Martín, M., Grossmann, I.E. (2011) AIChE J. DOI: 10.1002/aic.12544

14

Production of BIOETHANOL via gasification of Switchgrass

Fermentation

Martín, M., Grossmann, I.E. (2011) AIChE J. DOI: 10.1002/aic.12544

Gasification- Bioethanol

Rectification

Ads Corn Grit.

Molecular Sieves

Pervaporation

Ethanol dehydration

15 Martín, M., Grossmann, I.E. (2011) AIChE J. DOI: 10.1002/aic.12544

Gasification- Bioethanol Production of BIOETHANOL via gasification of Switchgrass

To cleanup Catalysis

16

From sour gas removal

Martín, M., Grossmann, I.E. (2011) AIChE J. DOI: 10.1002/aic.12544

Gasification- Bioethanol

Production of BIOETHANOL via gasification of Switchgrass

Optimal flowsheet for the production of BIOETHANOL via gasification of Switchgrass

17

$0.41/gal, $335MM

Martín, M., Grossmann, I.E. (2011) AIChE J. DOI: 10.1002/aic.12544

H2

Major savings due to income from excess of H2

TARGET (DOE) $1/gal

Gasification- Bioethanol

18 Martín, M., Grossmann, I.E. (2011) AIChE J. DOI: 10.1002/aic.12544

Energy consumption: Bioethanol

Water consumption: Bioethanol

Martín, M.; Ahmetovic, E.; Grossmann, I.E. (2011) Ind. Eng. Chem Res DOI: doi: 10.1021/ie101175p

Gasification- Bioethanol

FT reactor operating conditions to optimize Diesel production

( )( )( )2

0.2332* 0.633 * 1 0.0039* T _ Synthesis 273 533 CO

H CO

yy y

α = + − + − +

The product distribution depends on H2/CO ratio Operating temperature Operating Pressure

Song Hyun-Seob, S et al Korean J. Chem., 2004, 21, 308-317.

Production of FT DIESEL AND GREEN GASOLINE via gasification of Switchgrass

Gasification- FT liquids

Hydrocracking operating conditions to optimize Diesel production

Hydrocracking in the FT- fuels production: Using the experimental values from an hydrocracking reactor we develop correlations to predict the conversion as function of the temperature

Bezergianni, S et al. Bioresour. Technol. 2009, 100, 3036–3042

Gasification- FT liquids

Production of FT DIESEL AND GREEN GASOLINE via gasification of Switchgrass

Optimal flowsheet for the production of FT Diesel via gasification of Switchgrass

21

$0.72/gal, $212MM

Martín, M., Grossmann, I.E. (2011) Ind Eng. Chem Res. 50 (23),13485–13499

Gasification- FT liquids

$0.72/gal

22

Gasification Summary

Trade-offs Investment vs operation cost

Pyrolysis

Fast Pyrolysis of Lignocellulosic

23

We do not break down the biomass to syngas Lower operating temperature We obtain a wide range of products

24 Bridgewater biomass and bioenergy 38 (2012) 68-94

Bubbling fluid bed reactor

Circulating fluid bed reactor

Pyrolysis

25 Brown et al Biofuels. Bioprod. Biorefin. 2012, 6 (1), 73−87.

Pyrolysis

26 Brown et al Biofuels. Bioprod. Biorefin. 2012, 6 (1), 73−87.

Capital costs from $99 MM to $112 MM and operating costs from $70 MM/yr to $90 MM /yr . Hydrotreatment is needed for a positive internal rate of return (IRR)

Pyrolysis

Conclusions

--Biomass and waste are promising raw material for biofuels. --The range of biofuels is broad: hydrogen, bioethanol, biodiesel, green gasoline and diesel, biomethanol…. --It is feasible to produce second generation of biofuels but further development is required in purification and reaction technologies to increase water recycle and reuse and increase the yield of the processes.

27

Ackowledgement: Prof. Ignacio E. Grossmann