Talk kent symposium_2013_v01_for_web

Post on 06-Jul-2015

45 views 0 download

Tags:

Transcript of Talk kent symposium_2013_v01_for_web

Anomalous thermodynamic power lawsin nodal superconductors

arXiv:1302.2161

Bayan Mazidian1,2, Jorge Quintanilla2,3

James F. Annett1, Adrian D. Hillier2

1University of Bristol2ISIS Facility, STFC Rutherford Appleton Laboratory

3SEPnet and Hubbard Theory Consortium, University of Kent

Functional Materials Symposium, University of Kent, Canterbury 2013

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 1 / 39

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 2 / 39

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 2 / 39

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 2 / 39

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 2 / 39

PRELUDE - Symmetry

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Unconventional superconductors

Ph

oto

: Ed

die

Hu

i-B

on

-Ho

a, w

ww

.sh

iro

mi.c

om

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: Ken

net

h G

. Lib

bre

cht,

sn

ow

flak

es.c

om

Unconventional superconductors

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Ph

oto

: co

mm

on

s.w

ikim

edia

.org

Unconventional superconductors

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 2 / 39

PRELUDE - Topology

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 3 / 39

PRELUDE - Topology

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 3 / 39

PRELUDE - Topology

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 3 / 39

PRELUDE - Topology

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 3 / 39

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 4 / 39

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Power laws in nodal superconductors

Low-temperature specific heat of a superconductor gives information on thespectrum of low-lying excitations:

Fully gapped Point nodes Line nodesCv ∼ e−∆/T Cv ∼ T 3 Cv ∼ T 2

This simple idea has been around for a while.1

Widely used to fit experimental data on unconventional superconductors.2

1Anderson & Morel (1961), Leggett (1975)2Sigrist, Ueda (’89), Annett (’90), MacKenzie & Maeno (’03)Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 6 / 39

Linear nodes

It all comes from the density of states: +

g (E ) ∼ En−1 ⇒ Cv ∼ T n

linearpoint node line node

∆2k = I1

(kx||

2 + ky||

2)

∆2k = I1kx

||2

g(E ) = E2

2(2π)2I1√

I2g(E ) = LE

(2π)3√I1√

I2n = 3 n = 2

Key assumption: linear increase of the gap away from the node

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 7 / 39

Linear nodes

It all comes from the density of states: +

g (E ) ∼ En−1 ⇒ Cv ∼ T n

linearpoint node line node

∆2k = I1

(kx||

2 + ky||

2)

∆2k = I1kx

||2

g(E ) = E2

2(2π)2I1√

I2g(E ) = LE

(2π)3√I1√

I2n = 3 n = 2

Key assumption: linear increase of the gap away from the node

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 7 / 39

Linear nodes

It all comes from the density of states: +

g (E ) ∼ En−1 ⇒ Cv ∼ T n

linearpoint node line node

∆2k = I1

(kx||

2 + ky||

2)

∆2k = I1kx

||2

g(E ) = E2

2(2π)2I1√

I2g(E ) = LE

(2π)3√I1√

I2n = 3 n = 2

Key assumption: linear increase of the gap away from the node

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 7 / 39

Shallow nodesRelax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculativebeamer reveal one at atimely) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 8 / 39

Shallow nodesRelax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculativebeamer reveal one at atimely) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 8 / 39

Shallow nodesRelax the linear assumption and we also get different exponents:

shallowpoint node line node

∆2k = I1(kx

||2 + ky

||2)2 ∆2

k = I1kx||

4

g(E ) = E2(2π)2√I1

√I2

g(E ) = L√

E

(2π)3I14

1√

I2n = 2 n = 1.5

Shallow point nodes first discussed (speculativebeamer reveal one at atimely) by Leggett [1979].A shallow point node may be required by symmetry e.g. the proposed E2upairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].A shallow line node may result at the boundary between gapless and line nodebehaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 8 / 39

Line crossings

A different power law is expected at line crossings(e.g. d-wave pairing on a spherical Fermi surface):

crossingof linear line nodes

∆2k = I1

(kx||

2 − ky||

2)2

or I1kx||

2ky||

2

g(E ) =

E (1+2ln| L+√

E/I141

√E/I

141

|)

(2π)3√I1I2∼ E0.8

n = 1.8 (< 2 !!)

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 9 / 39

Crossing of shallow line nodesWhen shallow lines cross we get an even lower exponent:

crossingof shallow line nodes

∆2k = I1

(kx||

2 − ky||

2)4

or I1kx||

4ky||

4

g (E ) =

√E (1+2ln| L+E

14 /I

181

E14 /I

181

|)

(2π)3I14

1√

I2∼ E0.4

n = 1.4 *

* c.f. gapless excitations of a Fermi liquid: g (E ) = constant⇒ n = 1+

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 10 / 39

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

A generic mechanismMore generically, we expect this to happen at topological phase transitions insuperocnductors with multi-component order parameters:

∆ 0

∆ 1Fermi Sea

∆ 0

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 12 / 39

A generic mechanismMore generically, we expect this to happen at topological phase transitions insuperocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Sha

llow

no

de

Sha

llow

no

de

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 13 / 39

A generic mechanismMore generically, we expect this to happen at topological phase transitions insuperocnductors with multi-component order parameters:

∆ 1Fermi Sea

∆ 0

Line

ar

node

s

Line

ar

node

sJorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 14 / 39

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Singlet-triplet mixing in noncentrosymmetricsuperconductors

Non-centrosymmetric superconductors are the multi-component orderparameter supercondcutors par excellence:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

In practice, there is a varied phenomenology:Some are conventional (singlet) superconductors:BaPtSi33, Re3W4,...Others seem to be correlated triplet superconductors:LaNiC25 (c.f. centrosymmetric LaNiGa26), CePtr3Si (?) 7

3Batkova et al. JPCM (2010)4Zuev et al. PRB (2007)5Adrian D. Hillier, JQ and R. Cywinski PRL (2009)6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)7Bauer et al. PRL (2004)Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 16 / 39

Singlet-triplet mixing in noncentrosymmetricsuperconductors

Non-centrosymmetric superconductors are the multi-component orderparameter supercondcutors par excellence:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

In practice, there is a varied phenomenology:

Some are conventional (singlet) superconductors:BaPtSi33, Re3W4,...Others seem to be correlated triplet superconductors:LaNiC25 (c.f. centrosymmetric LaNiGa26), CePtr3Si (?) 7

3Batkova et al. JPCM (2010)4Zuev et al. PRB (2007)5Adrian D. Hillier, JQ and R. Cywinski PRL (2009)6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)7Bauer et al. PRL (2004)Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 16 / 39

Singlet-triplet mixing in noncentrosymmetricsuperconductors

Non-centrosymmetric superconductors are the multi-component orderparameter supercondcutors par excellence:

Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

In practice, there is a varied phenomenology:Some are conventional (singlet) superconductors:BaPtSi33, Re3W4,...Others seem to be correlated triplet superconductors:LaNiC25 (c.f. centrosymmetric LaNiGa26), CePtr3Si (?) 7

3Batkova et al. JPCM (2010)4Zuev et al. PRB (2007)5Adrian D. Hillier, JQ and R. Cywinski PRL (2009)6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)7Bauer et al. PRL (2004)Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 16 / 39

Li2PdxPt3−xB:A superconductor with tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

Experimentally, the series is found to gofrom fully-gapped (x = 3) to nodalbehaviour (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests the nodal state is atriplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 17 / 39

Li2PdxPt3−xB:A superconductor with tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

Experimentally, the series is found to gofrom fully-gapped (x = 3) to nodalbehaviour (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests the nodal state is atriplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 17 / 39

Li2PdxPt3−xB:A superconductor with tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

Experimentally, the series is found to gofrom fully-gapped (x = 3) to nodalbehaviour (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests the nodal state is atriplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 17 / 39

Li2PdxPt3−xB:A superconductor with tunable singlet-triplet mixingThe Li2PdxPt3−xB family (0 ≤ x ≤ 3; cubic point group O) provides a tunablerealisation of this singlet-triplet mixing:

Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)

Experimentally, the series is found to gofrom fully-gapped (x = 3) to nodalbehaviour (x = 0):

H.Q. Yuan et al.,Phys. Rev. Lett. 97, 017006 (2006).

NMR suggests the nodal state is atriplet:

M.Nishiyama et al.,Phys. Rev. Lett. 98, 047002 (2007)

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 17 / 39

Li2PdxPt3−xB: Phase diagram

Assume the order parameter corresponds to the most symmetric (A1)irreducible representation:

∆0 (k) = ∆0

d(k) = ∆0 × {A (x) (kx , ky , kz )− B (x)

[kx(k2

y + k2z), ky

(k2

z + k2x), kz(k2

x + k2y)]}

Treat A and B as in dependent tuning parameters and study quasiparticlespectrum.

+

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 18 / 39

Li2PdxPt3−xB: Phase diagramWe find a very rich phase diagram with topollogically-distinct phases.8

8C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al.,PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161.

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 19 / 39

Li2PdxPt3−xB: Phase diagramWe find a very rich phase diagram with topollogically-distinct phases.9

9C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al.,PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161.

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 20 / 39

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 21 / 39

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 22 / 39

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 23 / 39

Li2PdxPt3−xB: Phase diagram

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 24 / 39

Detecting the topological transitions

3 734

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 25 / 39

Detecting the topological transitions

3 734

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 26 / 39

Li2PdxPt3−xB: predicted specific heat power-laws

334

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 27 / 39

Li2PdxPt3−xB: predicted specific heat power-laws

jn = 2

n = 1.8

n = 1.4

n = 2

3

4

5

11

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 28 / 39

Li2PdxPt3−xB: predicted specific heat power-laws

3

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 29 / 39

Li2PdxPt3−xB: predicted specific heat power-laws

jn = 2

n = 1.8

n = 1.4

n = 2

3

4

5

11

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 30 / 39

Anomalous power laws throughout the phase diagrampPut these curves on a density plot:

The influence of the topological transition extends throughout the phasediagram (c.f. quantum critical endpoints)

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 31 / 39

Anomalous thermodynamic power laws in nodalsuperconductors

1 What are they?

2 How to get them

3 An example

4 Take-home message

Topological transitions in nodal superconductorshave clear signatures in bulk thermodynamic properties.

THANKS!

www.cond-mat.org

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 33 / 39

Topological transitions in nodal superconductorshave clear signatures in bulk thermodynamic properties.

THANKS!

www.cond-mat.org

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 33 / 39

ADDITIONAL INFORMATION

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 34 / 39

Power laws in nodal superconductors

Let’s remember where this came from:

Cv = T(

dSdT

)=

12kBT 2 ∑

k

Ek − T dEkdT︸︷︷︸≈0

Ek sech2 Ek2kBT︸ ︷︷ ︸

≈4e−Ek /KBT

∼ T−2∫

dEg (E )E2e−E/kBT at low T

g (E ) ∼ En−1 ⇒ Cv ∼ T−2T 1+2+n−1∫

dεε2+n−1e−ε︸ ︷︷ ︸a number

∼ T n

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 35 / 39

Power laws in nodal superconductors

Ek =√

ε2k + ∆2

k

≈√

I2k2⊥ + ∆

(kx|| , k

y||

)2

on the Fermi surface k||

x

k||

y

k|_ ∆(k

||

x,k||

y)

Compute density of states:

g(E ) =∫ ∫ ∫

δ(Ek − E )dkx dky dkz

Q.E.D.

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 36 / 39

Shallow line nodes in pnictides

back

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 37 / 39

Numerics

1

1.5

2

2.5

3

3.5

4

4.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

n

T / Tc

linear point nodeshallow point node

linear line nodecrossing of linear line nodes

shallow line nodecrossing of shallow line nodes

back

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 38 / 39

Li2PdxPt3−xB: Phase diagram

Bogoliubov Hamiltonian with Rashba spin-orbit coupling:

H(k) =(

h(k) ∆(k)∆†(k) −hT (−k)

)h(k) = εk I+ γk · σ

Assuming |εk| � |γk| � |d (k)| the quasi-particle spectrum is

E = ±√(εk − µ± |γk |)2 + |∆0 ± d(k)|2.

Take the most symmetric (A1) irreducible representation

d(k)/∆0 = A (X ,Y ,Z )− B(X(Y 2 + Z2) ,Y (Z2 + X2) ,Z (X2 + Y 2))

back

Jorge Quintanilla (Kent and ISIS) Anomalous supercond. power laws arXiv:1302.2161 Canterbury 2013 39 / 39