Step Functions, Impulse Functions, and the Delta Function

Post on 03-Feb-2022

14 views 0 download

Transcript of Step Functions, Impulse Functions, and the Delta Function

Step Functions, Impulse Functions,and the Delta Function

Department of Mathematics and Statistics

September 7, 2012

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 1 / 9

The Unit Step Function

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 2 / 9

The Unit Step Function

Definition

The unit step function or Heaviside function is a function of the form

ua(t) =

{

0, t < a,1, t ≥ a,

where a > 0.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 2 / 9

The Unit Step Function

Definition

The unit step function or Heaviside function is a function of the form

ua(t) =

{

0, t < a,1, t ≥ a,

where a > 0.

y

ta

1

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 2 / 9

The Laplace Transform of the Unit Step Function

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 3 / 9

The Laplace Transform of the Unit Step Function

The Laplace transform of ua is

L(ua(t)) =

a

0e−st · 0 dt +

a

e−st dt =

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 3 / 9

The Laplace Transform of the Unit Step Function

The Laplace transform of ua is

L(ua(t)) =

a

0e−st · 0 dt +

a

e−st dt =

a

e−st dt

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 3 / 9

The Laplace Transform of the Unit Step Function

The Laplace transform of ua is

L(ua(t)) =

a

0e−st · 0 dt +

a

e−st dt =

a

e−st dt

= limb→∞

−1

se−st

b

a

=

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 3 / 9

The Laplace Transform of the Unit Step Function

The Laplace transform of ua is

L(ua(t)) =

a

0e−st · 0 dt +

a

e−st dt =

a

e−st dt

= limb→∞

−1

se−st

b

a

=1

se−as .

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 3 / 9

The Difference Between Two Unit Step Functions

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 4 / 9

The Difference Between Two Unit Step Functions

u1(t) − u2(t)

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 4 / 9

The Difference Between Two Unit Step Functions

u1(t) − u2(t)

y

t

1

1 2 3

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 4 / 9

The Difference Between Two Unit Step Functions

u1(t) − u2(t)

y

t

1

1 2 3

L(u1(t) − u2(t)) = 1se−s − 1

se−2s .

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 4 / 9

The Unit Step Function Combined with Other Functions

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 5 / 9

The Unit Step Function Combined with Other Functions

Consider

g(t) =

{

0, t < a,f (t − a), t ≥ a,

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 5 / 9

The Unit Step Function Combined with Other Functions

Consider

g(t) =

{

0, t < a,f (t − a), t ≥ a,

We may write g(t) = ua(t)f (t − a).

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 5 / 9

The Unit Step Function Combined with Other Functions

Consider

g(t) =

{

0, t < a,f (t − a), t ≥ a,

We may write g(t) = ua(t)f (t − a).

t

y

1 2 3 4 5 6 7

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 5 / 9

L(g(t))

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

L(g(t))

L(g(t)) = L(ua(t)f (t − a)) =

0e−stua(t)f (t − a) dt

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

L(g(t))

L(g(t)) = L(ua(t)f (t − a)) =

0e−stua(t)f (t − a) dt

=

a

e−st f (t − a) dt.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

L(g(t))

L(g(t)) = L(ua(t)f (t − a)) =

0e−stua(t)f (t − a) dt

=

a

e−st f (t − a) dt.

Substituting τ = t − a:

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

L(g(t))

L(g(t)) = L(ua(t)f (t − a)) =

0e−stua(t)f (t − a) dt

=

a

e−st f (t − a) dt.

Substituting τ = t − a:

0e−s(τ+a)f (τ) dτ

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

L(g(t))

L(g(t)) = L(ua(t)f (t − a)) =

0e−stua(t)f (t − a) dt

=

a

e−st f (t − a) dt.

Substituting τ = t − a:

0e−s(τ+a)f (τ) dτ = e−as

0e−sτ f (τ) dτ

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

L(g(t))

L(g(t)) = L(ua(t)f (t − a)) =

0e−stua(t)f (t − a) dt

=

a

e−st f (t − a) dt.

Substituting τ = t − a:

0e−s(τ+a)f (τ) dτ = e−as

0e−sτ f (τ) dτ = e−asL(f (t)).

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

The kth Unit Impulse Function

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 7 / 9

The kth Unit Impulse Function

Definition

The kth unit impulse function is

δa,k(t) =

{

k, a < t < a + 1k,

0, 0 ≤ t ≤ a or t ≥ a + 1k,

where a > 0.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 7 / 9

The kth Unit Impulse Function

Definition

The kth unit impulse function is

δa,k(t) =

{

k, a < t < a + 1k,

0, 0 ≤ t ≤ a or t ≥ a + 1k,

where a > 0.

y

t

10

1 2 3

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 7 / 9

The Laplace Transform of the Unit Impulse Function

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

The Laplace Transform of the Unit Impulse Function

Note that

0δa,k(t) dt =

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

The Laplace Transform of the Unit Impulse Function

Note that

0δa,k(t) dt = 1, and that

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

The Laplace Transform of the Unit Impulse Function

Note that

0δa,k(t) dt = 1, and that

L(δa,k(t)) =

a+1k

a

k e−st dt = −k ·e−s

a+1k

− e−sa

s

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

The Laplace Transform of the Unit Impulse Function

Note that

0δa,k(t) dt = 1, and that

L(δa,k(t)) =

a+1k

a

k e−st dt = −k ·e−s

a+1k

− e−sa

s

= e−sa ·1 − e−s/k

s/k.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

The Laplace Transform of the Unit Impulse Function

Note that

0δa,k(t) dt = 1, and that

L(δa,k(t)) =

a+1k

a

k e−st dt = −k ·e−s

a+1k

− e−sa

s

= e−sa ·1 − e−s/k

s/k.

By L’Hopital’s rule: limk→∞

L(δa,k(t)) =

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

The Laplace Transform of the Unit Impulse Function

Note that

0δa,k(t) dt = 1, and that

L(δa,k(t)) =

a+1k

a

k e−st dt = −k ·e−s

a+1k

− e−sa

s

= e−sa ·1 − e−s/k

s/k.

By L’Hopital’s rule: limk→∞

L(δa,k(t)) = e−sa.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

The Dirac Delta Function

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 9 / 9

The Dirac Delta Function

Note that limk→∞

L(δ0,k(t)) = 1.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 9 / 9

The Dirac Delta Function

Note that limk→∞

L(δ0,k(t)) = 1.

We let limk→∞

L(δ0,k(t)) = L(δ(t)), where δ(t) is called the Dirac delta

function or delta function.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 9 / 9

The Dirac Delta Function

Note that limk→∞

L(δ0,k(t)) = 1.

We let limk→∞

L(δ0,k(t)) = L(δ(t)), where δ(t) is called the Dirac delta

function or delta function.

So L(δ(t)) = 1 and L−1(1) = δ(t).

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 9 / 9