Step Functions, Impulse Functions, and the Delta Function

38
Step Functions, Impulse Functions, and the Delta Function Department of Mathematics and Statistics September 7, 2012 Methods of Applied Calculus (JMU) Math 337 September 7, 2012 1/9

Transcript of Step Functions, Impulse Functions, and the Delta Function

Page 1: Step Functions, Impulse Functions, and the Delta Function

Step Functions, Impulse Functions,and the Delta Function

Department of Mathematics and Statistics

September 7, 2012

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 1 / 9

Page 2: Step Functions, Impulse Functions, and the Delta Function

The Unit Step Function

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 2 / 9

Page 3: Step Functions, Impulse Functions, and the Delta Function

The Unit Step Function

Definition

The unit step function or Heaviside function is a function of the form

ua(t) =

{

0, t < a,1, t ≥ a,

where a > 0.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 2 / 9

Page 4: Step Functions, Impulse Functions, and the Delta Function

The Unit Step Function

Definition

The unit step function or Heaviside function is a function of the form

ua(t) =

{

0, t < a,1, t ≥ a,

where a > 0.

y

ta

1

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 2 / 9

Page 5: Step Functions, Impulse Functions, and the Delta Function

The Laplace Transform of the Unit Step Function

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 3 / 9

Page 6: Step Functions, Impulse Functions, and the Delta Function

The Laplace Transform of the Unit Step Function

The Laplace transform of ua is

L(ua(t)) =

a

0e−st · 0 dt +

a

e−st dt =

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 3 / 9

Page 7: Step Functions, Impulse Functions, and the Delta Function

The Laplace Transform of the Unit Step Function

The Laplace transform of ua is

L(ua(t)) =

a

0e−st · 0 dt +

a

e−st dt =

a

e−st dt

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 3 / 9

Page 8: Step Functions, Impulse Functions, and the Delta Function

The Laplace Transform of the Unit Step Function

The Laplace transform of ua is

L(ua(t)) =

a

0e−st · 0 dt +

a

e−st dt =

a

e−st dt

= limb→∞

−1

se−st

b

a

=

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 3 / 9

Page 9: Step Functions, Impulse Functions, and the Delta Function

The Laplace Transform of the Unit Step Function

The Laplace transform of ua is

L(ua(t)) =

a

0e−st · 0 dt +

a

e−st dt =

a

e−st dt

= limb→∞

−1

se−st

b

a

=1

se−as .

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 3 / 9

Page 10: Step Functions, Impulse Functions, and the Delta Function

The Difference Between Two Unit Step Functions

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 4 / 9

Page 11: Step Functions, Impulse Functions, and the Delta Function

The Difference Between Two Unit Step Functions

u1(t) − u2(t)

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 4 / 9

Page 12: Step Functions, Impulse Functions, and the Delta Function

The Difference Between Two Unit Step Functions

u1(t) − u2(t)

y

t

1

1 2 3

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 4 / 9

Page 13: Step Functions, Impulse Functions, and the Delta Function

The Difference Between Two Unit Step Functions

u1(t) − u2(t)

y

t

1

1 2 3

L(u1(t) − u2(t)) = 1se−s − 1

se−2s .

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 4 / 9

Page 14: Step Functions, Impulse Functions, and the Delta Function

The Unit Step Function Combined with Other Functions

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 5 / 9

Page 15: Step Functions, Impulse Functions, and the Delta Function

The Unit Step Function Combined with Other Functions

Consider

g(t) =

{

0, t < a,f (t − a), t ≥ a,

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 5 / 9

Page 16: Step Functions, Impulse Functions, and the Delta Function

The Unit Step Function Combined with Other Functions

Consider

g(t) =

{

0, t < a,f (t − a), t ≥ a,

We may write g(t) = ua(t)f (t − a).

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 5 / 9

Page 17: Step Functions, Impulse Functions, and the Delta Function

The Unit Step Function Combined with Other Functions

Consider

g(t) =

{

0, t < a,f (t − a), t ≥ a,

We may write g(t) = ua(t)f (t − a).

t

y

1 2 3 4 5 6 7

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 5 / 9

Page 18: Step Functions, Impulse Functions, and the Delta Function

L(g(t))

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

Page 19: Step Functions, Impulse Functions, and the Delta Function

L(g(t))

L(g(t)) = L(ua(t)f (t − a)) =

0e−stua(t)f (t − a) dt

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

Page 20: Step Functions, Impulse Functions, and the Delta Function

L(g(t))

L(g(t)) = L(ua(t)f (t − a)) =

0e−stua(t)f (t − a) dt

=

a

e−st f (t − a) dt.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

Page 21: Step Functions, Impulse Functions, and the Delta Function

L(g(t))

L(g(t)) = L(ua(t)f (t − a)) =

0e−stua(t)f (t − a) dt

=

a

e−st f (t − a) dt.

Substituting τ = t − a:

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

Page 22: Step Functions, Impulse Functions, and the Delta Function

L(g(t))

L(g(t)) = L(ua(t)f (t − a)) =

0e−stua(t)f (t − a) dt

=

a

e−st f (t − a) dt.

Substituting τ = t − a:

0e−s(τ+a)f (τ) dτ

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

Page 23: Step Functions, Impulse Functions, and the Delta Function

L(g(t))

L(g(t)) = L(ua(t)f (t − a)) =

0e−stua(t)f (t − a) dt

=

a

e−st f (t − a) dt.

Substituting τ = t − a:

0e−s(τ+a)f (τ) dτ = e−as

0e−sτ f (τ) dτ

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

Page 24: Step Functions, Impulse Functions, and the Delta Function

L(g(t))

L(g(t)) = L(ua(t)f (t − a)) =

0e−stua(t)f (t − a) dt

=

a

e−st f (t − a) dt.

Substituting τ = t − a:

0e−s(τ+a)f (τ) dτ = e−as

0e−sτ f (τ) dτ = e−asL(f (t)).

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 6 / 9

Page 25: Step Functions, Impulse Functions, and the Delta Function

The kth Unit Impulse Function

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 7 / 9

Page 26: Step Functions, Impulse Functions, and the Delta Function

The kth Unit Impulse Function

Definition

The kth unit impulse function is

δa,k(t) =

{

k, a < t < a + 1k,

0, 0 ≤ t ≤ a or t ≥ a + 1k,

where a > 0.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 7 / 9

Page 27: Step Functions, Impulse Functions, and the Delta Function

The kth Unit Impulse Function

Definition

The kth unit impulse function is

δa,k(t) =

{

k, a < t < a + 1k,

0, 0 ≤ t ≤ a or t ≥ a + 1k,

where a > 0.

y

t

10

1 2 3

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 7 / 9

Page 28: Step Functions, Impulse Functions, and the Delta Function

The Laplace Transform of the Unit Impulse Function

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

Page 29: Step Functions, Impulse Functions, and the Delta Function

The Laplace Transform of the Unit Impulse Function

Note that

0δa,k(t) dt =

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

Page 30: Step Functions, Impulse Functions, and the Delta Function

The Laplace Transform of the Unit Impulse Function

Note that

0δa,k(t) dt = 1, and that

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

Page 31: Step Functions, Impulse Functions, and the Delta Function

The Laplace Transform of the Unit Impulse Function

Note that

0δa,k(t) dt = 1, and that

L(δa,k(t)) =

a+1k

a

k e−st dt = −k ·e−s

a+1k

− e−sa

s

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

Page 32: Step Functions, Impulse Functions, and the Delta Function

The Laplace Transform of the Unit Impulse Function

Note that

0δa,k(t) dt = 1, and that

L(δa,k(t)) =

a+1k

a

k e−st dt = −k ·e−s

a+1k

− e−sa

s

= e−sa ·1 − e−s/k

s/k.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

Page 33: Step Functions, Impulse Functions, and the Delta Function

The Laplace Transform of the Unit Impulse Function

Note that

0δa,k(t) dt = 1, and that

L(δa,k(t)) =

a+1k

a

k e−st dt = −k ·e−s

a+1k

− e−sa

s

= e−sa ·1 − e−s/k

s/k.

By L’Hopital’s rule: limk→∞

L(δa,k(t)) =

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

Page 34: Step Functions, Impulse Functions, and the Delta Function

The Laplace Transform of the Unit Impulse Function

Note that

0δa,k(t) dt = 1, and that

L(δa,k(t)) =

a+1k

a

k e−st dt = −k ·e−s

a+1k

− e−sa

s

= e−sa ·1 − e−s/k

s/k.

By L’Hopital’s rule: limk→∞

L(δa,k(t)) = e−sa.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 8 / 9

Page 35: Step Functions, Impulse Functions, and the Delta Function

The Dirac Delta Function

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 9 / 9

Page 36: Step Functions, Impulse Functions, and the Delta Function

The Dirac Delta Function

Note that limk→∞

L(δ0,k(t)) = 1.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 9 / 9

Page 37: Step Functions, Impulse Functions, and the Delta Function

The Dirac Delta Function

Note that limk→∞

L(δ0,k(t)) = 1.

We let limk→∞

L(δ0,k(t)) = L(δ(t)), where δ(t) is called the Dirac delta

function or delta function.

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 9 / 9

Page 38: Step Functions, Impulse Functions, and the Delta Function

The Dirac Delta Function

Note that limk→∞

L(δ0,k(t)) = 1.

We let limk→∞

L(δ0,k(t)) = L(δ(t)), where δ(t) is called the Dirac delta

function or delta function.

So L(δ(t)) = 1 and L−1(1) = δ(t).

Methods of Applied Calculus (JMU) Math 337 September 7, 2012 9 / 9