Reliability and Modeling in Harsh Environments for Space ... · Bias for irra.: V gs=V ds=1.2V...

Post on 12-Mar-2020

2 views 0 download

Transcript of Reliability and Modeling in Harsh Environments for Space ... · Bias for irra.: V gs=V ds=1.2V...

Reliability and Modeling in Harsh Environments for Space Applications

Farzan Jazaeri Christian Enz

Integrated Circuits Laboratory (ICLAB), Ecole Polytechnique Fédérale de Lausanne (EPFL)

MOS AK

Outline

● Harsh Environments ● Radiation Effects on Electronics

● Physics-based modeling and characterization ●  Ionizing and Non-ionizing Radiations ● Radiation Environment Close to Earth ● Radiation Effects on MOSFETs

● Low Temperature (Cryogenic) Electronics ● Physics-based modeling and characterization ● Compact models

Farzan Jazaeri | 2018

Outline

● Harsh Environments ● Radiation Effects on Electronics

● Physics-based modeling and characterization ●  Ionizing and Non-ionizing Radiations ● Radiation Environment Close to Earth ● Radiation Effects on MOSFETs

● Low Temperature (Cryogenic) Electronics ● Physics-based modeling and characterization ● Compact models

Farzan Jazaeri | 2018

Extreme Harsh Environments [1]

Radiativestresses•  CosmicraysandVanAllenbeltsTemperatureMechanicalstresses•  Vibration,Shock,andpressureChemical•  Saltwater,Moisture,Noxiousgases

CMS event ATLAS event

Colliding Galaxies

Supernova Active Galactic

Farzan Jazaeri | 2018

Khanna,VinodKumar,“Operatingelectronicsbeyondconventionallimits,”IOPPublishing,2017.

Images:NASA

Earth Orbiter Venus

Europa Mars Rover

Lifetime: min/hrs (on surface)

TID ~7 Mrad

– 145 º C

Lifetime: ~1 hr (on surface)

+470 º C TID ~7 krad

TID

0.1 - 0.3 krad

LEO: 1 - 3 yrs (500 - 1500 cycles)

GEO: 10 - 15 yrs (3500 - 5500 cycles)

10 - 15 krad

0 º C 50 º C

5 krad /yr

Lifetime: 90 days

– 125 º C +25 º C

Earth Orbiter Venus

Europa º

Lifetime: ~1 hr (on surface)

+470 º C TID ~7 krad

Lifetime: ~1 hr (on surface)

+470 º C TID ~7 krad

TID

0.1 - 0.3 krad

LEO: 1 - 3 yrs (500 - 1500 cycles)

GEO: 10 - 15 yrs (3500 - 5500 cycles)

10 - 15 krad

0 º C 50 º C

5 krad /yr

Lifetime: 90 days

– 125 º C +25 º C

Farzan Jazaeri | 2018

(Images:NASA)

Extreme Harsh Environments [2]

Outline

● Harsh Environment ● Radiation Effects on Electronics

● Physics-based modeling and characterization ●  Ionizing and Non-ionizing Radiations ● Radiation Environment Close to Earth ● Radiation Effects on MOSFETs

● Low Temperature (Cryogenic) Electronics ● Physics-based modeling and characterization ● Compact models

Farzan Jazaeri | 2018

Non-ionizing and Ionizing Radiations

Non-ionizingiselectromagneticradiationthatdoesnotcarryenoughenergyperquantum(photonenergy)toionizeatomsormolecules.Ionizingradiationisradiationthatcarriesenoughenergytoliberateelectronsfromatomsormoleculesmadeupofenergeticsubatomicparticles,ionsoratomsmovingathighspeeds,andelectromagneticwaves.

Farzan Jazaeri | 2018

RadiationEffects:•  TotalIonizingDose(TID)

•  longtermfailure•  timedependent,

•  SingleEventEffects(SEE)•  aninstantaneousfailure,•  describedbyameantime,•  Softandharderrors

•  Canpartiallymitigatewithshielding

Radiation Effects on MOSFETs

Image for ATLAS from CERN: Higherleveloftotal ionizingdose(1Gradfortheinnermostcomponents)

1𝐺𝑟𝑎𝑑=1𝑒7𝐺𝑦=1𝑒7𝐽/𝑘𝑔 

Farzan Jazaeri | 2018

- - - - - - - - -

G

Source Drain

Gate Drain Source

Substrate (p-type)

STI

Total Ionizing radiation effects on MOSFETs

IDleak.parIDleak.main

IDleak.par

SG

D

Pre

-irra

diat

ion

Dra

in C

urre

nt (L

og)

Gate Voltage

•  Mobility Degradation •  Subthreshold Swing Degradation •  Shift in threshold Voltage •  Leakage Current

EffectsofQotandQitinalloxides

Farzan Jazaeri | 2018

Farzan Jazaeri et al., ”Charge-Based Modeling of Radiation Damage in Symmetric Double-Gate MOSFETs,” IEEE Journal of the Electron Devices Society, 2018

- - - - - - - - -

G

Source Drain

Gate Drain Source

Substrate (p-type)

STI

+ + + + + + + + + + + + + + + +

+ +

+ +

+ + + + + + +

+ +

+ +

+

+ + + + + + +

+ +

+ +

+

Total Ionizing radiation effects on MOSFETs

Pre

-irra

diat

ion

Dra

in C

urre

nt (L

og)

Gate Voltage

EffectsofQotandQitinalloxides

Farzan Jazaeri | 2018

Farzan Jazaeri et al., ”Charge-Based Modeling of Radiation Damage in Symmetric Double-Gate MOSFETs,” IEEE Journal of the Electron Devices Society, 2018

IDleak.parIDleak.main

IDleak.par

SG

D

•  Mobility Degradation •  Subthreshold Swing Degradation •  Shift in threshold Voltage •  Leakage Current

- - - - - - - - -

G

Source Drain

Gate Drain Source

+ +

+ +

+ + + + + + +

+ +

+ +

+

Substrate (p-type)

STI

+ + + + + + + + + + + + + + + + + + + + + + +

+ +

+ +

+

Total Ionizing radiation effects on MOSFETs

Pre

-irra

diat

ion

Dra

in C

urre

nt (L

og)

Gate Voltage

EffectsofQotandQitinalloxides

Farzan Jazaeri | 2018

Farzan Jazaeri et al., ”Charge-Based Modeling of Radiation Damage in Symmetric Double-Gate MOSFETs,” IEEE Journal of the Electron Devices Society, 2018

IDleak.parIDleak.main

IDleak.par

SG

D

•  Mobility Degradation •  Subthreshold Swing Degradation •  Shift in threshold Voltage •  Leakage Current

Ionizing radiation effects on 28nm MOSFETs

C.-M. Zhang Farzan Jazaeri et al., "Characterization of GigaRad Total Ionizing Dose and Annealing Effects on 28-nm Bulk MOSFETs," IEEE TNS, 2017.

Farzan Jazaeri | 2018

C.-M. Zhang, Farzan Jazaeri et al., "Impact of GigaRad Ionizing Dose on 28 nm Bulk MOSFETs for Future HL-LHC," in 2016 46th European Solid-State Device Research Conference (ESSDERC), 2016.

VGS=0 V Test chip under probes Bias for irra.: Vgs=Vds=1.2V

Ionizing radiation effects on 28nm MOSFETs

Farzan Jazaeri | 2018

Farzan Jazaeri et al., ”Charge-Based Modeling of Radiation Damage in Symmetric Double-Gate MOSFETs,” IEEE Journal of the Electron Devices Society, 2018

Ionizing radiation effects on FinFETs

Farzan Jazaeri | 2018

Analyticalmodel(lines)andTCADsimulations(markers)

Ionizing radiation effects on FinFETs

Farzan Jazaeri | 2018

Uniformdistributionofinterfacetrapdensity(lines)andTCADsimulations(markers)

Farzan Jazaeri et al., ”Charge-Based Modeling of Radiation Damage in Symmetric Double-Gate MOSFETs,” IEEE Journal of the Electron Devices Society, 2018

Outline

● Harsh Environments ● Radiation Effects on Electronics

● Physics-based modeling and characterization ●  Ionizing and Non-ionizing Radiations ● Radiation Environment Close to Earth ● Radiation Effects on MOSFETs

● Low Temperature (Cryogenic) Electronics ● Physics-based modeling and characterization ● Compact models

Farzan Jazaeri | 2018

Introduction

●  Cryo-characterization ●  Physics-based Cryo-MOS model ●  Compact models (EKV, BSIM6, UTSOI)

●  Quantify cryogenic impact on circuit design Figures-of-Merit

Cryogenic MOS transistor models are essential to assess speed-power-noise trade-offs during design of cryogenic qubit control circuits.

Cryo?

Farzan Jazaeri | 2018

28 nm Bulk CMOS Characterization

Type W/L T[K]

nMOS 3μm/1μm 4.2,300

pMOS 3μm/1μm 4.2,77,300

nMOS 1μm/90nm 4.2,77,300

nMOS 3μm/28nm 4.2,300

nMOS 300nm/28nm 4.2,77,300

Measured devices (28 nm Bulk CMOS Process) Sample chip

Measured devices and Sample chip

Farzan Jazaeri | 2018

Arnout Beckers, Farzan Jazaeri, Christian Enz, “Cryogenic Characterization of 28 nm Bulk CMOS Technology for Quantum Computing,” ESSDERC2017.

28 nm Bulk CMOS Characterization

Transfer characteristics

Farzan Jazaeri | 2018

Arnout Beckers, Farzan Jazaeri, Christian Enz, “Cryogenic Characterization of 28 nm Bulk CMOS Technology for Quantum Computing,” ESSDERC2017.

28 nm Bulk CMOS Characterization

Transfer characteristics

Farzan Jazaeri | 2018

Arnout Beckers, Farzan Jazaeri, Christian Enz, “Cryogenic Characterization of 28 nm Bulk CMOS Technology for Quantum Computing,” ESSDERC2017.

28 nm Bulk CMOS Characterization

Transfer characteristics

Farzan Jazaeri | 2018

Arnout Beckers, Farzan Jazaeri, Christian Enz, “Cryogenic Characterization of 28 nm Bulk CMOS Technology for Quantum Computing,” ESSDERC2017.

Parameter Extraction: Subthreshold Swing

𝑆𝑆 (𝑚𝑉/𝑑𝑒𝑐)= 𝐾𝑇/𝑞 ×ln(10)×nn=(1+ 𝐶↓𝑑 /𝐶↓𝑜𝑥   )

Farzan Jazaeri | 2018

Parameter Extraction: Subthreshold Swing

Subthreshold swing

o  ΔSSlong ~ 10 mV/dec at 4.2 K and 300 K

𝑆𝑆 (𝑚𝑉/𝑑𝑒𝑐)= 𝐾𝑇/𝑞 ×ln(10)×nn=(1+ 𝐶↓𝑑 /𝐶↓𝑜𝑥   )

Farzan Jazaeri | 2018

Parameter Extraction: Subthreshold Swing

Subthreshold swing

o  ΔSSlong ~ 10 mV/dec at 4.2 K and 300 K

𝑆𝑆 (𝑚𝑉/𝑑𝑒𝑐)= 𝐾𝑇/𝑞 ×ln(10)×nn=(1+ 𝐶↓𝑑 /𝐶↓𝑜𝑥   )

Farzan Jazaeri | 2018

Parameter Extraction: Subthreshold Swing

Subthreshold swing

o  ΔSSlong ~ 10 mV/dec at 4.2 K and 300 K o  ΔSSshort ~ 30 mV/dec at 4.2 K and 300 K o  Short channel effects (~ 20 mV/dec) T-

independent

Farzan Jazaeri | 2018

Cryogenic Physics-based Modeling

will affect the ●  Subthreshold swing ●  On-state current, leakage

current ●  Threshold voltage ●  Mobility

●  Incomplete ionization, 𝑁↓𝐴↑− (𝑇)

100 mK − 77 K

●  Decreased phonon scattering ●  Hot-carrier effects

●  Fermi–Dirac and Boltzmann statistics (𝑇) ●  Intrinsic carrier concentration 𝑛↓𝑖 (𝑇) ●  Band gap widening, 𝐸↓𝑔 (𝑇) ●  Velocity saturation, Δφms, Thermal voltage (𝑇)

Important phenomena

●  Quantum confinement

●  Dominant impurity / surface roughness scattering

●  Interface charge trapping, 𝐷↓𝑖𝑡 

Farzan Jazaeri | 2018

A.Beckers,F.JazaeriandC.Enz,"CryogenicMOSTransistorModel,"inIEEETransactionsonElectronDevices,2018.FarzanJazaeriandJean-MichelSallese,“ModelingNanowireandDouble-GateJunctionlessField-EffectTransistors,”CambridgeUniversityPress,April2018.

Physics-based Modeling: Model Overview Interface charge traps Reduced phonon scattering

Mobility reduction f(VG)

Incomplete ionization

BCs: •  Continuity of dielectric displacement vectors •  Bulk charge neutrality

•  Mobile charge:

•  Current (linear regime):

•  Maxwell-Boltzmann validity??

𝜵↑𝟐 𝜳=− 𝝔/𝜺↓𝑺𝒊  

Farzan Jazaeri | 2018

Physics-based Modeling

Model

Farzan Jazaeri | 2018

Compact Modeling: BSIM6

BSIM6 Model Card Extraction at 4.2 K

Farzan Jazaeri | 2018

Compact Modeling: Simplified EKV

1.  Long-channel model validated on 28-nm process at 4.2 K 2.  Simple expressions 3.  Few parameters 4.  capture physical effects 5.  Fitting parameters Arnout Beckers, et al, “Cryogenic Characterization of 28 nm Bulk CMOS

Technology for Quantum Computing,” ESSDERC2017.

Farzan Jazaeri | 2018

Compact Modeling: Simplified EKV

Arnout Beckers, et al, “Cryogenic Characterization of 28 nm Bulk CMOS Technology for Quantum Computing,” ESSDERC2017.

1.  Short-channel model validated on 28-nm process at 4.2 K 2.  Simple expressions 3.  Few parameters 4.  capture physical effects 5.  Fitting parameters

Farzan Jazaeri | 2018

Farzan Jazaeri | 2018

Thankyouforyourattention!

References

1.  FarzanJazaeriandJean-MichelSallese,“ModelingNanowireandDouble-GateJunctionlessField-EffectTransistors,”CambridgeUniversityPress,April2018.

2.  A.Beckers,F.Jazaeri,etal."CharacterizationandModelingof28-nmFDSOICMOSTechnologydowntoCryogenicTemperatures,"Solidstateelectronics,2018.

3.  A. Beckers, F. Jazaeri and C. Enz, "CryogenicMOS TransistorModel," in IEEE Transactions onElectronDevices,2018.

4.  A. Beckers, F. Jazaeri, A. Ruffino, C. Bruschini, A. Baschirotto and C. Enz, "Cryogeniccharacterizationof28nmbulkCMOStechnologyforquantumcomputing,"201747thEuropeanSolid-StateDeviceResearchConference(ESSDERC),Leuven,2017,pp.62-65.

5.  A. Beckers, F. Jazaeri and C. Enz, "Characterization and Modeling of 28 nm Bulk CMOSTechnologydownto4.2K,"inIEEEJournaloftheElectronDevicesSociety.

6.  A.Beckers, F. Jazaeri,H. Bohuslavskyi, L.Hutin, S.De Franceschi andC. Enz, "Design-orientedmodelingof28nmFDSOICMOStechnologydownto4.2Kforquantumcomputing,"2018JointInternational EUROSOI Workshop and International Conference on Ultimate Integration onSilicon(EUROSOI-ULIS),Granada,2018,pp.1-4.

7.  F.Jazaeri,C.-M.Zhang,A.Pezzotta,andC.Enz,”Charge-BasedModelingofRadiationDamageinSymmetricDouble-GateMOSFETs,”IEEEJournaloftheElectronDevicesSociety,2018.

8.  C.-M. Zhang, F. Jazaeri, et al., ”CharacterizationofGigaRadTotal IonizingDose andAnnealingEffectson28-nmBulkMOSFETs,”IEEETransactionsonNuclearScience,2017.

Farzan Jazaeri | 2018

References

1.  C.-M.Zhang,F.Jazaerietal.,”CharacterizationandModelingofGigaRad-TID-InducedDrainLeakageCurrentina28-nmBulkCMOSTechnology,”acceptedin2018IEEENuclearandSpaceRadiationEffectsConference(NSREC),2018.

2.  C.-M.Zhang,F.Jazaeri,etal.,”Totalionizingdoseeffectsonanalogperformanceof28nmbulkMOSFETs,”in201747thEuropeanSolid-StateDeviceResearchConference(ESSDERC),2017.

3.  C.-M.Zhang,F.Jazaeri,etal.,”GigaRadtotalionizingdoseandpost-irradiationeffectson28nmbulkMOSFETs,”in2016IEEENuclearScienceSymposium(NSS),2016.

4.  A.Pezzotta,C.-M.Zhang,F.Jazaeri,C.Bruschini,G.Borghello,F.Faccio,S.Mattiazzo,A.Baschirotto,C.Enz,”ImpactofGigaRadIonizingDoseon28nmbulkMOSFETsforfutureHL-LHC,”in201646thEuropeanSolid-StateDeviceResearchConference(ESSDERC),2016.

5.  Khanna,VinodKumar,“Operatingelectronicsbeyondconventionallimits,”IOPPublishing,2017.

Farzan Jazaeri | 2018

High Temperature Electronics

Farzan Jazaeri | 2018

Sourcesofionizingradiationininterplanetaryspace

Khanna,VinodKumar,“Operatingelectronicsbeyondconventionallimits,”IOPPublishing,2017. Image:NASA

SolarOrbiter

Impact on Analog Figures-of-Merit: Gm/ID

1.  Simple model of current efficiency at 4.2 K validated on a 28-nm process 2.  The 𝑮↓𝒎 ∕𝑰↓𝑫  -characteristic is the basis for additional analog metrics (noise, gain, linearity,

…), as well as transistor sizing and biasing.

22spec spec spec ox T TW kTI I I n C U UL q

µ= ⋅ = ⋅ ⋅ ⋅ =W Wwith and

Farzan Jazaeri | 2018

Compact Modeling: BSIM6

Cryo?

Farzan Jazaeri | 2018

Compact Modeling: BSIM6

Cryo?

28 nm, 4.2 K

BSIM6

BSIM6’s temperature scaling cannot catch SS at 4.2 K for 28 nm.

For long channel T-scaling works.

Farzan Jazaeri | 2018

Radiation Environment Close to Earth

Phoenix Mars Lander

Solar Orbiter

VanAllenbelts:ParticlestrappedintheVanAllenbeltsi.e.energeticchargedparticles,mostofwhichoriginatefromthesolarwind(protons,electrons,andheavyions).Cosmicrays:Galacticcosmicrayparticlesandparticlesfromsolarevents(massejectionsandsolarflares).

Farzan Jazaeri | 2018

ImagesCredit:NASA