Precise measurement of ๐’Žand ๐šช - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2...

Post on 31-Jan-2020

1 views 0 download

Transcript of Precise measurement of ๐’Žand ๐šช - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2...

Precise measurement of ๐’Ž๐‘พ and ๐šช๐–using threshold scan method

Peixun Shen, Paolo Azzurri, Zhijun Liang, Gang Li, Chunxu Yu

NKU, INFN Pisa, IHEP

IAS Program on High Energy Physics 2020

2020/1/18, HKUST

1IAS Program on High Energy Physics 2020 shenpx@ihep.ac.cn

Outline

Motivation

Methodology

Statistical and systematic uncertainties

Data taking schemes

Summary

2shenpx@ihep.ac.cnIAS Program on High Energy Physics 2020

Motivation

The mW plays a central role in precision EW

measurements and in constraint on the SM model

through global fit.

๐บ๐น =๐œ‹๐›ผ

2๐‘š๐‘Š2 sin2 ๐œƒ๐‘Š

1

(1+ฮ”๐‘Ÿ)

ฮ”๐‘Ÿ is the correction, whose leading-order

contributions depend on the ๐‘š๐‘ก and ๐‘š๐ป

Several ways to measure ๐‘š๐‘Š:

The direct method, with kinematically-constrained or mass

reconstructions

Using the lepton end-point energy

๐‘Š+๐‘Šโˆ’ threshold scan method (used in this study )

3shenpx@ihep.ac.cnIAS Program on High Energy Physics 2020

W.J. Stirling, arXiv:hep-ph/9503320v1 14 Mar 1995

ILC, arXiv:1603.06016v1 [hep-ex] 18 Mar 2016

FCC-ee, arXiv:1703.01626v1 [hep-ph] 5 Mar 2017

Methodology

Why?

๐œŽ๐‘Š๐‘Š(๐‘š๐‘Š, ฮ“๐‘Š, ๐‘ )= ๐‘๐‘œ๐‘๐‘ 

๐ฟ๐œ–๐‘ƒ(๐‘ƒ =

๐‘๐‘Š๐‘Š

๐‘๐‘Š๐‘Š+๐‘๐‘๐‘˜๐‘”)

so ๐‘š๐‘Š, ฮ“๐‘Š can be obtained by fitting the ๐‘๐‘œ๐‘๐‘ , with the theoretical formula ๐œŽ๐‘Š๐‘Š

How?

In general, these uncertainties are dependent on ๐‘ , so it is a optimization problem

when considering the data taking.

If โ€ฆ, then?

With the configurations of ๐ฟ, ฮ”๐ฟ, ฮ”๐ธ โ€ฆ, we can obtain: ๐‘š๐‘Š~?ฮ“๐‘Š โˆผ?

shenpx@ihep.ac.cn 4

ฮ”๐‘š๐‘Š, ฮ”ฮ“๐‘Š๐‘๐‘œ๐‘๐‘  ๐ฟ ๐œ– N๐‘๐‘˜๐‘” ๐ธ ๐œŽ๐ธ โ€ฆโ€ฆ

IAS Program on High Energy Physics 2020

Theoretical Tool

The ๐œŽ๐‘Š๐‘Š is a function of ๐‘ , ๐‘š๐‘Š and ฮ“๐‘Š,

which is calculated with the GENTLE

package in this work (CC03)

The ISR correction is also calculated by

convoluting the Born cross sections with

QED structure function, with the radiator

up to NL O(๐›ผ2) and O(๐›ฝ3)

5shenpx@ihep.ac.cnIAS Program on High Energy Physics 2020

Statistical and systematic uncertainties

6shenpx@ihep.ac.cnIAS Program on High Energy Physics 2020

Statistical uncertainty

ฮ”๐œŽ๐‘Š๐‘Š = ๐œŽ๐‘Š๐‘Š ร—ฮ”๐‘๐‘Š๐‘Š

๐‘๐‘Š๐‘Š= ๐œŽ๐‘Š๐‘Š ร—

๐‘๐‘Š๐‘Š+๐‘๐‘๐‘˜๐‘”

๐‘๐‘Š๐‘Š

=๐œŽ๐‘Š๐‘Š

๐ฟ๐œ–๐‘ƒ(๐‘ƒ =

๐‘๐‘Š๐‘Š

๐‘๐‘Š๐‘Š+๐‘๐‘๐‘˜๐‘”)

ฮ”๐‘š๐‘Š =๐œ•๐œŽ๐‘Š๐‘Š

๐œ•๐‘š๐‘Š

โˆ’1ร— ฮ”๐œŽ๐‘Š๐‘Š =

๐œ•๐œŽ๐‘Š๐‘Š

๐œ•๐‘š๐‘Š

โˆ’1ร—

๐œŽ๐‘Š๐‘Š

๐ฟ๐œ–๐‘ƒ

ฮ”ฮ“๐‘Š =๐œ•๐œŽ๐‘Š๐‘Š

๐œ•ฮ“๐‘Š

โˆ’1ร— ฮ”๐œŽ๐‘Š๐‘Š =

๐œ•๐œŽ๐‘Š๐‘Š

๐œ•ฮ“๐‘Š

โˆ’1ร—

๐œŽ๐‘Š๐‘Š

๐ฟ๐œ–๐‘ƒ

With ๐ฟ=3.2๐‘Ž๐‘โˆ’1, ๐œ–=0.8, ๐‘ƒ=0.9:

ฮ”๐‘š๐‘Š=0.6 MeV, ฮ”ฮ“๐‘Š=1.4 MeV (individually)

7shenpx@ihep.ac.cnIAS Program on High Energy Physics 2020

Statistical uncertainty

When there are more than one data point, we can measure both ๐‘š๐‘Š and ฮ“๐‘Š.

With the chisquare defined as:

the error matrix is in the form:

When the number of fit parameter reduce to 1:

ฮ”๐‘š๐‘Š =๐œ•๐œŽ๐‘Š๐‘Š

๐œ•๐‘š๐‘Š

โˆ’1

ร— ฮ”๐œŽ๐‘Š๐‘Š =๐œ•๐œŽ๐‘Š๐‘Š

๐œ•๐‘š๐‘Š

โˆ’1

ร—๐œŽ๐‘Š๐‘Š

๐ฟ๐œ–๐‘ƒ

shenpx@ihep.ac.cn 8IAS Program on High Energy Physics 2020

Statistical uncertainty

shenpx@ihep.ac.cn 9IAS Program on High Energy Physics 2020

Systematic uncertainty

To

tal

Uncorrelated

E

๐œŽ๐ธ

๐‘๐‘๐‘˜๐‘”

Correlated

๐œŽ๐‘Š๐‘Š

๐ฟ

๐œ–

10shenpx@ihep.ac.cnIAS Program on High Energy Physics 2020

Energy calibration uncertainty

With ฮ”๐ธ, the total energy becomes:

๐ธ = ๐บ ๐ธ๐‘, ฮ”๐ธ + ๐บ(๐ธ๐‘š, ฮ”๐ธ)

ฮ”๐‘š๐‘Š =๐œ•๐‘š๐‘Š

๐œ•๐œŽ๐‘Š๐‘Š

๐œ•๐œŽ๐‘Š๐‘Š

๐œ•๐ธฮ”๐ธ

The ฮ”mW will be large when ฮ”๐ธ

increase, and almost independent

with ๐’”.

11shenpx@ihep.ac.cnIAS Program on High Energy Physics 2020

Energy spread uncertainty

With ๐ธ๐ต๐‘†, the ๐œŽ๐‘Š๐‘Š becomes:

๐œŽ๐‘Š๐‘Š ๐ธ = 0โˆž๐œŽ๐‘Š๐‘Š ๐ธโ€ฒ ร— ๐บ ๐ธ, ๐ธโ€ฒ ๐‘‘๐ธโ€ฒ

= ๐œŽ ๐ธโ€ฒ ร—1

2๐œ‹๐›ฟ๐ธ๐‘’

โˆ’ ๐ธโˆ’๐ธโ€ฒ2

2๐œŽ๐ธ2

๐‘‘๐ธโ€ฒ

๐œŽ๐ธ + ฮ”๐œŽ๐ธ is used in the simulation, and ๐œŽ๐ธ is for

the fit formula.

The ๐’Ž๐‘พ insensitive to ๐œน๐‘ฌwhen taking data

around ๐Ÿ๐Ÿ”๐Ÿ. ๐Ÿ‘ GeV

12shenpx@ihep.ac.cnIAS Program on High Energy Physics 2020

Background uncertainty

The effect of background are in two different ways

1. Stat. part: ฮ”๐‘š๐‘Š(๐‘๐ต) =๐œ•๐‘š๐‘Š

๐œ•๐œŽ๐‘Š๐‘Šโ‹…

๐ฟ๐œ–๐ต๐œŽ๐ต

๐ฟ๐œ–

2. Sys. part: ฮ”๐‘š๐‘Š(๐œŽ๐ต) =๐œ•๐‘š๐‘Š

๐œ•๐œŽ๐‘Š๐‘Šโ‹…๐ฟ๐œ–๐ต๐œŽ๐ต

๐ฟ๐œ–โ‹… ฮ”๐œŽ๐ต

With L=3.2abโˆ’1, ๐œ–๐ต๐œŽ๐ต = 0.3pb, ฮ”๐œŽ๐ต = 10โˆ’3๏ผš

ฮ”๐‘š๐‘Š(๐‘๐ต)~0.2 MeV, which has been embodied in the product of ๐œ– โ‹… ๐‘ƒ,

and ฮ”๐‘š๐‘Š(๐œŽ๐ต) is considerable with the former.

shenpx@ihep.ac.cn 13IAS Program on High Energy Physics 2020

Correlated sys. uncertainty

The correlated sys. uncertainty includes: ฮ”๐ฟ, ฮ”๐œ–, ฮ”๐œŽ๐‘Š๐‘Šโ€ฆ

Since ๐‘๐‘œ๐‘๐‘  = ๐ฟ โ‹… ๐œŽ โ‹… ๐œ–, these uncertainties affect ๐œŽ๐‘Š๐‘Š in same way.

We use the total correlated sys. uncertainty in data taking optimization:

๐›ฟ๐‘ = ฮ”๐ฟ2 + ฮ”๐œ–2

ฮ”๐‘š๐‘Š =๐œ•๐‘š๐‘Š

๐œ•๐œŽ๐‘Š๐‘Š๐œŽ๐‘Š๐‘Š โ‹… ๐›ฟ๐‘ , ฮ”ฮ“๐‘Š =

๐œ•ฮ“๐‘Š

๐œ•๐œŽ๐‘Š๐‘Š๐œŽ๐‘Š๐‘Š โ‹… ๐›ฟ๐‘

14shenpx@ihep.ac.cnIAS Program on High Energy Physics 2020

Correlated sys. uncertainty

ฮ”๐‘š๐‘Š =๐œ•๐‘š๐‘Š

๐œ•๐œŽ๐‘Š๐‘Š๐œŽ๐‘Š๐‘Š โ‹… ๐›ฟ๐‘

Two ways to consider to effect:

Gaussian distribution

๐œŽ๐‘Š๐‘Š = ๐บ(๐œŽ๐‘Š๐‘Š0 , ๐›ฟ๐‘ โ‹… ๐œŽ๐‘Š๐‘Š

0 )

Non-Gaussian (will cause shift)

๐œŽ๐‘Š๐‘Š = ๐œŽ๐‘Š๐‘Š0 ร— (1 + ๐›ฟ๐‘)

With ๐›ฟ๐‘ = +1.4 โ‹… 10โˆ’4(10โˆ’3) at 161.2GeV

ฮ”mW~0.24MeV (3MeV)

15shenpx@ihep.ac.cnIAS Program on High Energy Physics 2020

Correlated sys. uncertainty

To consider the correlation, the scale factor method is

used,

๐œ’2 = ๐‘–๐‘› ๐‘ฆ๐‘–โˆ’โ„Žโ‹…๐‘ฅ๐‘–

2

๐›ฟ๐‘–2 +

โ„Žโˆ’1 2

๐›ฟ๐‘2 ,

where ๐‘ฆ๐‘– , ๐‘ฅ๐‘– are the true and fit results, h is a free

parameter, ๐›ฟ๐‘– and ๐›ฟ๐‘ are the independent and

correlated uncertainties.

For the Gaussian consideration, the scale factor can

reduce the effect.

For the non-Gaussian case, the shift of the ๐‘š๐‘Š is

controlled well

16shenpx@ihep.ac.cnIAS Program on High Energy Physics 2020

17shenpx@ihep.ac.cn

โ€ข Smallest ฮ”๐‘š๐‘Š, ฮ”ฮ“๐‘Š (stat.)

โ€ข Large sys. uncertainties

โ€ข Only for ๐‘š๐‘Š or ฮ“๐‘Š, without correlation

One point

โ€ข Measure ๐‘š๐‘Š and ฮ“๐‘Š simultanously

โ€ข Without the correlation

Two points

โ€ข Measure ๐‘š๐‘Š and ฮ“๐‘Š simultaneously, with the correlation

Three points

or more

Da

ta t

ak

ing

sch

emes

Data taking scheme

IAS Program on High Energy Physics 2020

Taking data at one point (just for ๐’Ž๐‘พ)

There are two special energy points :

The one which most statistical sensitivity to ๐‘š๐‘Š:

ฮ”๐‘š๐‘Š(stat.) ~0.59 MeV at ๐ธ=161.2 GeV

(with ฮ”ฮ“๐‘Š and ฮ”๐ธ๐ต๐‘† effect)

The one ฮ”๐‘š๐‘Š(stat)~0.65 MeV at ๐ธ โ‰ˆ 162.3 GeV

(with negative ฮ”ฮ“๐‘Š, ฮ”๐ธ๐ต๐‘† effects)

With ฮ”๐ฟ ฮ”๐œ– < 10โˆ’4, ฮ”๐œŽ๐ต<10โˆ’3, ฮ”๐ธ=0.7MeV,

ฮ”๐œŽ๐ธ=0.1, ฮ”ฮ“๐‘Š=42MeV)

18

โˆš๐’”(GeV) 161.2 162.3

๐ธ 0.36 0.37

๐œŽ๐ธ 0.20 -

๐œŽ๐ต 0.17 0.17

๐›ฟ๐‘ 0.24 0.34

ฮ“W 7.49 -

Stat. 0.59 0.65

ฮ”๐‘š๐‘Š(MeV) 7.53 0.84

shenpx@ihep.ac.cnIAS Program on High Energy Physics 2020

Taking data at two energy points

To measure ฮ”๐‘š๐‘Š and ฮ”ฮ“๐‘Š, we scan the energies and the luminosity fraction of

the two data points:

1. ๐ธ1, ๐ธ2 โˆˆ [155, 165] GeV, ฮ”๐ธ = 0.1 GeV

2. ๐น โ‰ก๐ฟ1

๐ฟ2โˆˆ 0, 1 , ฮ”๐น = 0.05

We define the object function: ๐‘‡ = mW + 0.1ฮ“๐‘Š to optimize the scan parameters

(assuming ๐‘š๐‘Š is more important than ฮ“๐‘Š).

19shenpx@ihep.ac.cnIAS Program on High Energy Physics 2020

Taking data at two energy points

20

The 3D scan is performed, and

2D plots are used to illustrate

the optimization results;

When draw the ฮ”๐‘‡ change

with one parameter, another

is fixed with scanning of the

third one;

๐ธ1=157.5 GeV, ๐ธ2=162.5

GeV (around ๐œ•๐œŽ๐‘Š๐‘Š

๐œ•ฮ“๐‘Š=0 ,

๐œ•๐œŽ๐‘Š๐‘Š

๐œ•๐ธ๐ต๐‘†=0)

and F=0.3 are taken as

the result.

shenpx@ihep.ac.cn

(MeV) ๐„ ๐ˆ๐‘ฌ ๐ˆ๐‘ฉ ๐œน๐’„ Stat. Total

ฮ”๐‘š๐‘Š 0.38 - 0.21 0.33 0.80 0.97

ฮ”ฮ“๐‘Š 0.54 0.56 1.38 0.20 2.92 3.32

ฮ”๐ฟ(ฮ”๐œ–)<10โˆ’4, ฮ”๐œŽ๐ต<10โˆ’3

๐œŽ๐ธ=1 ร— 10โˆ’3, ฮ”๐ธ=0.7MeVฮ”๐œŽ๐ธ=0.1%

IAS Program on High Energy Physics 2020

Optimization of ๐ธ1

21

The procedure of three

points optimization is

similar to two points

shenpx@ihep.ac.cn

๐ธ1 157.5 GeV

๐ธ2 162.5 GeV

๐ธ3 161.5 GeV

๐น1 0.3

๐น2 0.9

Taking data at three energy points

ฮ”๐‘š๐‘Š~0.98 MeVฮ”ฮ“๐‘Š ~3.37 MeV

ฮ”๐ฟ(ฮ”๐œ–)<10โˆ’4, ฮ”๐œŽ๐ต<10โˆ’3

๐œŽ๐ธ=1 ร— 10โˆ’3, ฮ”๐ธ=0.7MeVฮ”๐œŽ๐ธ=0.1

IAS Program on High Energy Physics 2020

Summary

The precise measurement of ๐‘š๐‘Š (ฮ“๐‘Š) is studied (threshold scan method)

Different data taking schemes are investigated, based on the stat. and sys.

uncertainties analysis.

With the configurations :

22shenpx@ihep.ac.cn

Thank you๏ผ

ฮ”๐ฟ(ฮ”๐œ–)<10โˆ’4, ฮ”๐œŽ๐ต<10โˆ’3

๐œŽ๐ธ=1 ร— 10โˆ’3, ฮ”๐ธ=0.7MeVฮ”ฮ“๐‘Š=42MeV, ฮ”๐œŽ๐ธ=0.1

IAS Program on High Energy Physics 2020

Backup Slides

shenpx@ihep.ac.cn 23IAS Program on High Energy Physics 2020

Covariance matrix method

๐‘ฆ๐‘– =๐‘›๐‘–

๐œ–, ๐‘ฃ๐‘–๐‘– = ๐œŽ๐‘–

2 + ๐‘ฆ๐‘–2๐œŽ๐‘“

2

where ๐œŽ๐‘– is the stat. error of ๐‘›๐‘–, ๐œŽ๐‘“ is the relative error of ๐œ–

The correlation between data points ๐‘–, j contributes to the

off-diagonal matrix element ๐‘ฃ๐‘–๐‘—:

Then we minimize: ๐œ’12 = ๐œ‚๐‘‡๐‘‰โˆ’1๐œ‚

For this method, The biasness is uncontrollable

(MO Xiao-Hu HEPNP 30 (2006) 140-146)

H. J. Behrend et al. (CELLO Collaboration)

Phys. Lett. B 183 (1987) 400

Dโ€™ Agostini G. Nucl. Instrum. Meth. A346 (1994)

24

Scale factor method

This method is used by introducing a free fit parameter to the ๐œ’2:

๐œ’22 = ๐‘–

๐‘“๐‘ฆ๐‘–โˆ’๐‘˜๐‘–2

๐œŽ๐‘–2 +

๐‘“โˆ’1 2

๐œŽ๐‘“2

๐œŽ๐‘– includes stat. and uncorrelated sys errors, ๐œŽ๐‘“ are the correlated errors.

The equivalence of this form and the one from matrix method is

proved in : MO Xiao-Hu HEPNP 30 (2006) 140-146 .

Both the matrix and the factor approach have bias, which may be considerably striking when the data points are quite many or the scale factor is rather large.

According to ref: MO Xiao-Hu HEPNP 31 (2007) 745-749, the unbiased ๐œ’2 is constructed as:

๐œ’32 = ๐‘–

๐‘ฆ๐‘–โˆ’๐‘”๐‘˜๐‘–2

๐œŽ๐‘–2 +

๐‘”โˆ’1 2

๐œŽ๐‘“2 (used in our previous results)

The central value from ๐œ’22 can be re-scaled, the relative error is still larger than those from ๐œ’3

2 estimation.25