Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2...

25
Precise measurement of and using threshold scan method Peixun Shen, Paolo Azzurri, Zhijun Liang, Gang Li, Chunxu Yu NKU, INFN Pisa, IHEP IAS Program on High Energy Physics 2020 2020/1/18, HKUST 1 IAS Program on High Energy Physics 2020 [email protected]

Transcript of Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2...

Page 1: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Precise measurement of π’Žπ‘Ύ and πšͺ𝐖using threshold scan method

Peixun Shen, Paolo Azzurri, Zhijun Liang, Gang Li, Chunxu Yu

NKU, INFN Pisa, IHEP

IAS Program on High Energy Physics 2020

2020/1/18, HKUST

1IAS Program on High Energy Physics 2020 [email protected]

Page 2: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Outline

Motivation

Methodology

Statistical and systematic uncertainties

Data taking schemes

Summary

[email protected] Program on High Energy Physics 2020

Page 3: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Motivation

The mW plays a central role in precision EW

measurements and in constraint on the SM model

through global fit.

𝐺𝐹 =πœ‹π›Ό

2π‘šπ‘Š2 sin2 πœƒπ‘Š

1

(1+Ξ”π‘Ÿ)

Ξ”π‘Ÿ is the correction, whose leading-order

contributions depend on the π‘šπ‘‘ and π‘šπ»

Several ways to measure π‘šπ‘Š:

The direct method, with kinematically-constrained or mass

reconstructions

Using the lepton end-point energy

π‘Š+π‘Šβˆ’ threshold scan method (used in this study )

[email protected] Program on High Energy Physics 2020

W.J. Stirling, arXiv:hep-ph/9503320v1 14 Mar 1995

ILC, arXiv:1603.06016v1 [hep-ex] 18 Mar 2016

FCC-ee, arXiv:1703.01626v1 [hep-ph] 5 Mar 2017

Page 4: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Methodology

Why?

πœŽπ‘Šπ‘Š(π‘šπ‘Š, Ξ“π‘Š, 𝑠)= π‘π‘œπ‘π‘ 

πΏπœ–π‘ƒ(𝑃 =

π‘π‘Šπ‘Š

π‘π‘Šπ‘Š+π‘π‘π‘˜π‘”)

so π‘šπ‘Š, Ξ“π‘Š can be obtained by fitting the π‘π‘œπ‘π‘ , with the theoretical formula πœŽπ‘Šπ‘Š

How?

In general, these uncertainties are dependent on 𝑠, so it is a optimization problem

when considering the data taking.

If …, then?

With the configurations of 𝐿, Δ𝐿, Δ𝐸 …, we can obtain: π‘šπ‘Š~?Ξ“π‘Š ∼?

[email protected] 4

Ξ”π‘šπ‘Š, Ξ”Ξ“π‘Šπ‘π‘œπ‘π‘  𝐿 πœ– Nπ‘π‘˜π‘” 𝐸 𝜎𝐸 ……

IAS Program on High Energy Physics 2020

Page 5: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Theoretical Tool

The πœŽπ‘Šπ‘Š is a function of 𝑠, π‘šπ‘Š and Ξ“π‘Š,

which is calculated with the GENTLE

package in this work (CC03)

The ISR correction is also calculated by

convoluting the Born cross sections with

QED structure function, with the radiator

up to NL O(𝛼2) and O(𝛽3)

[email protected] Program on High Energy Physics 2020

Page 6: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Statistical and systematic uncertainties

[email protected] Program on High Energy Physics 2020

Page 7: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Statistical uncertainty

Ξ”πœŽπ‘Šπ‘Š = πœŽπ‘Šπ‘Š Γ—Ξ”π‘π‘Šπ‘Š

π‘π‘Šπ‘Š= πœŽπ‘Šπ‘Š Γ—

π‘π‘Šπ‘Š+π‘π‘π‘˜π‘”

π‘π‘Šπ‘Š

=πœŽπ‘Šπ‘Š

πΏπœ–π‘ƒ(𝑃 =

π‘π‘Šπ‘Š

π‘π‘Šπ‘Š+π‘π‘π‘˜π‘”)

Ξ”π‘šπ‘Š =πœ•πœŽπ‘Šπ‘Š

πœ•π‘šπ‘Š

βˆ’1Γ— Ξ”πœŽπ‘Šπ‘Š =

πœ•πœŽπ‘Šπ‘Š

πœ•π‘šπ‘Š

βˆ’1Γ—

πœŽπ‘Šπ‘Š

πΏπœ–π‘ƒ

Ξ”Ξ“π‘Š =πœ•πœŽπ‘Šπ‘Š

πœ•Ξ“π‘Š

βˆ’1Γ— Ξ”πœŽπ‘Šπ‘Š =

πœ•πœŽπ‘Šπ‘Š

πœ•Ξ“π‘Š

βˆ’1Γ—

πœŽπ‘Šπ‘Š

πΏπœ–π‘ƒ

With 𝐿=3.2π‘Žπ‘βˆ’1, πœ–=0.8, 𝑃=0.9:

Ξ”π‘šπ‘Š=0.6 MeV, Ξ”Ξ“π‘Š=1.4 MeV (individually)

[email protected] Program on High Energy Physics 2020

Page 8: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Statistical uncertainty

When there are more than one data point, we can measure both π‘šπ‘Š and Ξ“π‘Š.

With the chisquare defined as:

the error matrix is in the form:

When the number of fit parameter reduce to 1:

Ξ”π‘šπ‘Š =πœ•πœŽπ‘Šπ‘Š

πœ•π‘šπ‘Š

βˆ’1

Γ— Ξ”πœŽπ‘Šπ‘Š =πœ•πœŽπ‘Šπ‘Š

πœ•π‘šπ‘Š

βˆ’1

Γ—πœŽπ‘Šπ‘Š

πΏπœ–π‘ƒ

[email protected] 8IAS Program on High Energy Physics 2020

Page 9: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Statistical uncertainty

[email protected] 9IAS Program on High Energy Physics 2020

Page 10: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Systematic uncertainty

To

tal

Uncorrelated

E

𝜎𝐸

π‘π‘π‘˜π‘”

Correlated

πœŽπ‘Šπ‘Š

𝐿

πœ–

[email protected] Program on High Energy Physics 2020

Page 11: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Energy calibration uncertainty

With Δ𝐸, the total energy becomes:

𝐸 = 𝐺 𝐸𝑝, Δ𝐸 + 𝐺(πΈπ‘š, Δ𝐸)

Ξ”π‘šπ‘Š =πœ•π‘šπ‘Š

πœ•πœŽπ‘Šπ‘Š

πœ•πœŽπ‘Šπ‘Š

πœ•πΈΞ”πΈ

The Ξ”mW will be large when Δ𝐸

increase, and almost independent

with 𝒔.

[email protected] Program on High Energy Physics 2020

Page 12: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Energy spread uncertainty

With 𝐸𝐡𝑆, the πœŽπ‘Šπ‘Š becomes:

πœŽπ‘Šπ‘Š 𝐸 = 0βˆžπœŽπ‘Šπ‘Š 𝐸′ Γ— 𝐺 𝐸, 𝐸′ 𝑑𝐸′

= 𝜎 𝐸′ Γ—1

2πœ‹π›ΏπΈπ‘’

βˆ’ πΈβˆ’πΈβ€²2

2𝜎𝐸2

𝑑𝐸′

𝜎𝐸 + Ξ”πœŽπΈ is used in the simulation, and 𝜎𝐸 is for

the fit formula.

The π’Žπ‘Ύ insensitive to πœΉπ‘¬when taking data

around πŸπŸ”πŸ. πŸ‘ GeV

[email protected] Program on High Energy Physics 2020

Page 13: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Background uncertainty

The effect of background are in two different ways

1. Stat. part: Ξ”π‘šπ‘Š(𝑁𝐡) =πœ•π‘šπ‘Š

πœ•πœŽπ‘Šπ‘Šβ‹…

πΏπœ–π΅πœŽπ΅

πΏπœ–

2. Sys. part: Ξ”π‘šπ‘Š(𝜎𝐡) =πœ•π‘šπ‘Š

πœ•πœŽπ‘Šπ‘Šβ‹…πΏπœ–π΅πœŽπ΅

πΏπœ–β‹… Ξ”πœŽπ΅

With L=3.2abβˆ’1, πœ–π΅πœŽπ΅ = 0.3pb, Ξ”πœŽπ΅ = 10βˆ’3:

Ξ”π‘šπ‘Š(𝑁𝐡)~0.2 MeV, which has been embodied in the product of πœ– β‹… 𝑃,

and Ξ”π‘šπ‘Š(𝜎𝐡) is considerable with the former.

[email protected] 13IAS Program on High Energy Physics 2020

Page 14: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Correlated sys. uncertainty

The correlated sys. uncertainty includes: Δ𝐿, Ξ”πœ–, Ξ”πœŽπ‘Šπ‘Šβ€¦

Since π‘π‘œπ‘π‘  = 𝐿 β‹… 𝜎 β‹… πœ–, these uncertainties affect πœŽπ‘Šπ‘Š in same way.

We use the total correlated sys. uncertainty in data taking optimization:

𝛿𝑐 = Δ𝐿2 + Ξ”πœ–2

Ξ”π‘šπ‘Š =πœ•π‘šπ‘Š

πœ•πœŽπ‘Šπ‘ŠπœŽπ‘Šπ‘Š β‹… 𝛿𝑐 , Ξ”Ξ“π‘Š =

πœ•Ξ“π‘Š

πœ•πœŽπ‘Šπ‘ŠπœŽπ‘Šπ‘Š β‹… 𝛿𝑐

[email protected] Program on High Energy Physics 2020

Page 15: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Correlated sys. uncertainty

Ξ”π‘šπ‘Š =πœ•π‘šπ‘Š

πœ•πœŽπ‘Šπ‘ŠπœŽπ‘Šπ‘Š β‹… 𝛿𝑐

Two ways to consider to effect:

Gaussian distribution

πœŽπ‘Šπ‘Š = 𝐺(πœŽπ‘Šπ‘Š0 , 𝛿𝑐 β‹… πœŽπ‘Šπ‘Š

0 )

Non-Gaussian (will cause shift)

πœŽπ‘Šπ‘Š = πœŽπ‘Šπ‘Š0 Γ— (1 + 𝛿𝑐)

With 𝛿𝑐 = +1.4 β‹… 10βˆ’4(10βˆ’3) at 161.2GeV

Ξ”mW~0.24MeV (3MeV)

[email protected] Program on High Energy Physics 2020

Page 16: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Correlated sys. uncertainty

To consider the correlation, the scale factor method is

used,

πœ’2 = 𝑖𝑛 π‘¦π‘–βˆ’β„Žβ‹…π‘₯𝑖

2

𝛿𝑖2 +

β„Žβˆ’1 2

𝛿𝑐2 ,

where 𝑦𝑖 , π‘₯𝑖 are the true and fit results, h is a free

parameter, 𝛿𝑖 and 𝛿𝑐 are the independent and

correlated uncertainties.

For the Gaussian consideration, the scale factor can

reduce the effect.

For the non-Gaussian case, the shift of the π‘šπ‘Š is

controlled well

[email protected] Program on High Energy Physics 2020

Page 17: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

[email protected]

β€’ Smallest Ξ”π‘šπ‘Š, Ξ”Ξ“π‘Š (stat.)

β€’ Large sys. uncertainties

β€’ Only for π‘šπ‘Š or Ξ“π‘Š, without correlation

One point

β€’ Measure π‘šπ‘Š and Ξ“π‘Š simultanously

β€’ Without the correlation

Two points

β€’ Measure π‘šπ‘Š and Ξ“π‘Š simultaneously, with the correlation

Three points

or more

Da

ta t

ak

ing

sch

emes

Data taking scheme

IAS Program on High Energy Physics 2020

Page 18: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Taking data at one point (just for π’Žπ‘Ύ)

There are two special energy points :

The one which most statistical sensitivity to π‘šπ‘Š:

Ξ”π‘šπ‘Š(stat.) ~0.59 MeV at 𝐸=161.2 GeV

(with Ξ”Ξ“π‘Š and Δ𝐸𝐡𝑆 effect)

The one Ξ”π‘šπ‘Š(stat)~0.65 MeV at 𝐸 β‰ˆ 162.3 GeV

(with negative Ξ”Ξ“π‘Š, Δ𝐸𝐡𝑆 effects)

With Δ𝐿 Ξ”πœ– < 10βˆ’4, Ξ”πœŽπ΅<10βˆ’3, Δ𝐸=0.7MeV,

Ξ”πœŽπΈ=0.1, Ξ”Ξ“π‘Š=42MeV)

18

βˆšπ’”(GeV) 161.2 162.3

𝐸 0.36 0.37

𝜎𝐸 0.20 -

𝜎𝐡 0.17 0.17

𝛿𝑐 0.24 0.34

Ξ“W 7.49 -

Stat. 0.59 0.65

Ξ”π‘šπ‘Š(MeV) 7.53 0.84

[email protected] Program on High Energy Physics 2020

Page 19: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Taking data at two energy points

To measure Ξ”π‘šπ‘Š and Ξ”Ξ“π‘Š, we scan the energies and the luminosity fraction of

the two data points:

1. 𝐸1, 𝐸2 ∈ [155, 165] GeV, Δ𝐸 = 0.1 GeV

2. 𝐹 ≑𝐿1

𝐿2∈ 0, 1 , Δ𝐹 = 0.05

We define the object function: 𝑇 = mW + 0.1Ξ“π‘Š to optimize the scan parameters

(assuming π‘šπ‘Š is more important than Ξ“π‘Š).

[email protected] Program on High Energy Physics 2020

Page 20: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Taking data at two energy points

20

The 3D scan is performed, and

2D plots are used to illustrate

the optimization results;

When draw the Δ𝑇 change

with one parameter, another

is fixed with scanning of the

third one;

𝐸1=157.5 GeV, 𝐸2=162.5

GeV (around πœ•πœŽπ‘Šπ‘Š

πœ•Ξ“π‘Š=0 ,

πœ•πœŽπ‘Šπ‘Š

πœ•πΈπ΅π‘†=0)

and F=0.3 are taken as

the result.

[email protected]

(MeV) 𝐄 πˆπ‘¬ πˆπ‘© πœΉπ’„ Stat. Total

Ξ”π‘šπ‘Š 0.38 - 0.21 0.33 0.80 0.97

Ξ”Ξ“π‘Š 0.54 0.56 1.38 0.20 2.92 3.32

Δ𝐿(Ξ”πœ–)<10βˆ’4, Ξ”πœŽπ΅<10βˆ’3

𝜎𝐸=1 Γ— 10βˆ’3, Δ𝐸=0.7MeVΞ”πœŽπΈ=0.1%

IAS Program on High Energy Physics 2020

Page 21: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Optimization of 𝐸1

21

The procedure of three

points optimization is

similar to two points

[email protected]

𝐸1 157.5 GeV

𝐸2 162.5 GeV

𝐸3 161.5 GeV

𝐹1 0.3

𝐹2 0.9

Taking data at three energy points

Ξ”π‘šπ‘Š~0.98 MeVΞ”Ξ“π‘Š ~3.37 MeV

Δ𝐿(Ξ”πœ–)<10βˆ’4, Ξ”πœŽπ΅<10βˆ’3

𝜎𝐸=1 Γ— 10βˆ’3, Δ𝐸=0.7MeVΞ”πœŽπΈ=0.1

IAS Program on High Energy Physics 2020

Page 22: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Summary

The precise measurement of π‘šπ‘Š (Ξ“π‘Š) is studied (threshold scan method)

Different data taking schemes are investigated, based on the stat. and sys.

uncertainties analysis.

With the configurations :

[email protected]

Thank you!

Δ𝐿(Ξ”πœ–)<10βˆ’4, Ξ”πœŽπ΅<10βˆ’3

𝜎𝐸=1 Γ— 10βˆ’3, Δ𝐸=0.7MeVΞ”Ξ“π‘Š=42MeV, Ξ”πœŽπΈ=0.1

IAS Program on High Energy Physics 2020

Page 23: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Backup Slides

[email protected] 23IAS Program on High Energy Physics 2020

Page 24: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Covariance matrix method

𝑦𝑖 =𝑛𝑖

πœ–, 𝑣𝑖𝑖 = πœŽπ‘–

2 + 𝑦𝑖2πœŽπ‘“

2

where πœŽπ‘– is the stat. error of 𝑛𝑖, πœŽπ‘“ is the relative error of πœ–

The correlation between data points 𝑖, j contributes to the

off-diagonal matrix element 𝑣𝑖𝑗:

Then we minimize: πœ’12 = πœ‚π‘‡π‘‰βˆ’1πœ‚

For this method, The biasness is uncontrollable

(MO Xiao-Hu HEPNP 30 (2006) 140-146)

H. J. Behrend et al. (CELLO Collaboration)

Phys. Lett. B 183 (1987) 400

D’ Agostini G. Nucl. Instrum. Meth. A346 (1994)

24

Page 25: Precise measurement of π’Žand πšͺ - ias.ust.hkias.ust.hk/program/shared_doc/2020/202001hep/...2 π‘Š 2 sin2πœƒ π‘Š 1 (1+Ξ” ) Ξ” is the correction, whose leading-order contributions

Scale factor method

This method is used by introducing a free fit parameter to the πœ’2:

πœ’22 = 𝑖

π‘“π‘¦π‘–βˆ’π‘˜π‘–2

πœŽπ‘–2 +

π‘“βˆ’1 2

πœŽπ‘“2

πœŽπ‘– includes stat. and uncorrelated sys errors, πœŽπ‘“ are the correlated errors.

The equivalence of this form and the one from matrix method is

proved in : MO Xiao-Hu HEPNP 30 (2006) 140-146 .

Both the matrix and the factor approach have bias, which may be considerably striking when the data points are quite many or the scale factor is rather large.

According to ref: MO Xiao-Hu HEPNP 31 (2007) 745-749, the unbiased πœ’2 is constructed as:

πœ’32 = 𝑖

π‘¦π‘–βˆ’π‘”π‘˜π‘–2

πœŽπ‘–2 +

π‘”βˆ’1 2

πœŽπ‘“2 (used in our previous results)

The central value from πœ’22 can be re-scaled, the relative error is still larger than those from πœ’3

2 estimation.25