POTENTIAL AND LIMITATIONS OF (ADVANCED) · PDF file45 Elimination of pharmaceutical residues...

Post on 03-Feb-2018

217 views 1 download

Transcript of POTENTIAL AND LIMITATIONS OF (ADVANCED) · PDF file45 Elimination of pharmaceutical residues...

Titelmasterformat durch Klicken bearbeiten

Torsten C. Schmidt, Holger Lutze

POTENTIAL AND LIMITATIONS OF (ADVANCED) OXIDATION PROCESSES

IN WATER AND WASTEWATER TREATMENT

Cairo, February 19, 2013

Outline

Introduction/Overview of Oxidative Processes

Examples of our Recent Work: Lab Scale: Mechanistic Investigations with

Probe Compounds: Degradation of Micropollutants

Pilot Scale: Implementation of Ozonation in Drinking Water Treatment

(Full Scale: Advanced Treatment of Wastewater Effluents)

Conclusions and Outlook

Use of Oxidation Processes in Water

Treatment

Advantages:

• Constant process performance

• No disposal of concentrates or solids

(compared with AC sorption or membrane filtration)

Areas of Use:

• Drinking water

– Disinfection, Decolorization, Fe(II) and

Mn(II) Removal, Micropollutant Elimination

• Municipal wastewater

– Disinfection, Further elimination of micropollutants

• Industrial wastewater

• High purity industrial process waters

Important Considerations in Oxidative

Treatment Processes

Pollutants Oxidation CO2, H2O

Lifetime

Mechanisms

Kinetics

Transformation

products

Biodegradability

D Toxicological

effects

Scavenging by matrix

components

Possible loss of efficiency,

Oxidation byproducts

Prediction of

elimination based

on properties

possible?

Oxidation

Modified after U. von Gunten, eawag

Energy Demand/Carbon Footprint?

Estrogen Receptor

Effect? Effect

Oxidation

Estrogenically active compound

Effect of Oxidative Transformation:

Reduction of Estrogenicity

Transformation product

binds? binds

Modified after U. von Gunten, eawag

17b-Estradiole (E2)

Reduction of estrogenicity is proportional to

concentration decline of EE2

Lee et al. 2008

Reduction of Estrogenic Effects (EEEQ) of 17a-

Ethinylestradiole by Oxidative Processes

dose, M

0 5 10 15 20 25 30

Rel

ativ

e E

E2

or

EE

EQ

0.0

0.2

0.4

0.6

0.8

1.0

Relative EE20.0 0.2 0.4 0.6 0.8 1.0

Rel

ativ

e E

EE

Q

0.0

0.2

0.4

0.6

0.8

1.0

Chlorine

dose, M

0 5 10 15 20 25 30

Bromine

Relative EE20.0 0.2 0.4 0.6 0.8 1.0

Rel

ativ

e E

EE

Q

0.0

0.2

0.4

0.6

0.8

1.0

dose, M

0 5 10 15 20 25 30

Ozone

Relative EE20.0 0.2 0.4 0.6 0.8 1.0

Rel

ativ

e E

EE

Q

0.0

0.2

0.4

0.6

0.8

1.0

UV fluence, mJ/cm2

0 100 200 300 4000.0

0.2

0.4

0.6

0.8

1.0

OH radical

Relative EE20.0 0.2 0.4 0.6 0.8 1.0

Rel

ativ

e E

EE

Q

0.0

0.2

0.4

0.6

0.8

1.0

dose, M

0 5 10 15 20 25 30

Chlorine dioxide

Relative EE20.0 0.2 0.4 0.6 0.8 1.0

Rel

ativ

e E

EE

Q

0.0

0.2

0.4

0.6

0.8

1.0

dose, M

0 10 20 30 40

Ferrate

Relative EE20.0 0.2 0.4 0.6 0.8 1.0

Rel

ativ

e E

EE

Q

0.0

0.2

0.4

0.6

0.8

1.0

1

r2 = 0.96 r

2 = 0.99

1 1

r2 = 0.99

1

r2 = 0.99

1

r2 = 0.99

1

r2 = 0.99

Rel

ativ

e E

E2

or

EE

EQ

EE2

EEEQ

Modified after U. von Gunten, eawag 17a-Ethinylestradiole (EE2)

Oxidation + Biological Filtration:

Reduction of Toxic Effects in Whole Effluents

• Data from WWTP Regensdorf, CH:

Adapted from S. Zimmermann, EPFL

Elimination by ozonation and slow sand filtration in %

Bioluminescence

suppression

Acetylcholinesterase

suppression

Algae test

(photosynthesis)

Algae test

(growth)

YES Assay

Overview Advanced Oxidation Processes

UV based Ozone based H2O2 based

UV/H2O2

UV/O3

O3/H2O2

No Chemicals

O3/AC

Ozonation

Fenton Ultrasound

UV/TiO2

H2O+Ultrasound OH +H

H2O + VUV(120-160nm) OH +H

2O3 + HO2- 2OH +3O2

O3 + AC OH + O2

O3 + (OH-, NOM) OH

H2O2 + UVC 2 OH (F = 1)

O3+UVC H2O2 OH+O2

TiO2 + hn h+ + e- OH + O2-

Vacuum UV (VUV)

OH- yield: 50%

[Jarocki et al., in prep.]

H2O2

Fe(II) Fe(III)

OH

H2O2 HO2

[Fe(III)HO2]2+

Also direct

photolysis

pH < 4

BrO3-

NDMA

Comparison of Advanced Oxidative

Processes

UV based Ozone based H2O2 based

UV/H2O2(TiO2)

UV/O3

O3/H2O2

No Chemicals

O3/AC

Ozonation

Fenton Ultrasound

Energy demand

Vacuum UV

Loss of oxidation efficiency via matrix scavenging, assimilable organic carbon

formation, unknown transformation products

Negative Effects

Br- HOBr/OBr-

BrO3-

O3

O3/•OH

H2O2

Br-

Describing Pollutant Removal

Oxidant

No. of publ.

kinetic const.

k (ca. 2008)

Ozone ~ 500

OH Radicals ~ 2000

Chlorine ~ 300

Chlorodioxide ~ 100

Ferrate(VI) ~ 50

)

d Pk ox P

dt =

)0

lnP

k ox tP

=

Typical second order kinetic

constants for a pollutant P:

pH, T!

Quantification oxidant exposure:

• Matrix dependent

• Dosage dependent

• Consideration of secondary oxidants

Determination kinetic constants:

• Direct measurements

• Indirect measurements (Competition kinetics)

• Quantitative structure activity relationships (QSARs)

• Estimation from similar oxidants

Modified after U. von Gunten, eawag

Mechanistic Investigations

Degradation of Micropollutants:

Example Diclofenac

N

HOOCCl

Cl

H

O3

N

HOOCCl

Cl

H

O3

Possible sites of ozone attack

Diclofenac (Non-Steroidal Anti-Inflammatory Drug)

Ref.: Sein et al. (2008), Environ. Sci. Technol. 42, 6656

Degradation of Micropollutants:

Example Diclofenac

Ref.: Sein et al. (2008), Environ. Sci. Technol. 42, 6656

CH2

C O OH

N

Cl

Cl

H

O

O

O

CH2

C O OH

N

Cl

Cl

H

O3

CH2

C O OH

N

Cl

Cl

- O3

- H+

.

O3 + H2O OH + O2 + OH

([Diclofenac]0 = 50 µM) ■ Diclofenac ■ Iminoquinone (major intermediate) ■ 2,6-Dichloroaniline

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250

[Ozone] / µM

[Dic

lofe

na

c]

an

d [

Pro

du

cts

] / µ

M

N

O

Cl

Cl

CH2

COOH

Ref.: Sein et al. (2008), Environ. Sci. Technol. 42, 6656

Diclofenac Degradation in Presence of t-BuOH

Suggested Reaction Mechanism for the

Formation of the Iminoquinone Intermediate

CH2

N

Cl

Cl

.CO2H

O3 / - O2

CH2

N

Cl

Cl.

CO2H

OH

CH2

N

Cl

Cl.

CO2H

HO

CH2

N

Cl

Cl.

CO2H

O2

HOOO

- HO2

CH2

N

Cl

Cl

CO2H

O

1,2 H-shift

Iminoquinone

Ref.: Sein et al. (2008), Environ. Sci. Technol. 42, 6656

Pilot-Scale Study

• Provides drinking water for ca. 80% of the

population of Luxemburg

• The drinking water treatment plant was

build up in 1969

• Modernization of treatment and increase

of water production to 100’000 m3/d

planned

SEBES

Surface area: 3,8 km2 Capacity: 60 Mill. m3

SEBES Syndicat des Eaux du Barrage

d'Esch-sur-Sûre

Raw Water

Postozonation

pH Adjustment/Flocculation

Membrane Filtration

Preozonation

pH Adjustment/Flocculation

Membrane Filtration

Biological Filtration

Simplified Scheme of the Pilot Plant

Pilot Study SEBES

Accompanying Lab Studies:

Ozone Scavenging

Ozone half life time vs. ozone dose preozonation (RW O3), postozonation (UF O3) and AOP O3/H2O2 (UF AOP)

206

402

573

701

26

230260

523

63 57 58 46

0

100

200

300

400

500

600

700

800

1 2 3 5

t[s]

c(O3) [mg/l]

RW O3

UF O3

UF AOP

0

0,005

0,01

0,015

0,02

0,025

0,03

1 2 3 4 5

Ozo

ne e

xp

osu

re [

s]

c(O3) [mg/L]

RW O3

UF O3

UF AOP

Accompanying Lab Studies:

Disinfection Efficiency

Ozone exposure vs. ozone dose; preozonation (RW O3), postozonation (UF O3) and AOP O3/H2O2 (UF AOP); reaction time 500 s, DOC: raw water 2 mg/L, UF filtrate 1 mg/L, alkalinity: 0.4 mM, pH: 7

99% inactivation

B. subtilis spores

Accompanying Lab Studies:

Bromate Formation Potential

Bromate formation vs. ozone dose, c(Br-): 20 µg/L, complete ozone depletion, preozonation (RW O3), postozonation (UF O3) and AOP O3/H2O2 (UF AOP), DOC: RW 2 mg/L, UF 1 mg/L, Alkalinity: 0.4 mM, pH: 7

Bromate TLV

0

5

10

15

20

25

1 2 3 5

c(B

rO3

- )[µ

g/l]

c(O3) [mg/l]

RW O3

UF O3

UF AOP

Bromate drinking water standard

Design of Postozonation

Design of Postozonation

PN 2

PN 3

PN 1

H2O2

Q = 1 m3/h

c(O3) = 1, 3, 5 mg/L

c(H2O2) = ca. c(O3)

Reaction time = 10 min

0102030405060708090

100

Raw water Flocculation/UF UF O3 AC filter

Re

sid

ua

l c

on

c. in

%Pilot: Micropollutant Elimination

Bentazone MTBE

Dichlorobenzamide

Diclofenac

Carbamazepine

Sulfadiazine

Ozon dose UF O3 1 mg/L O3, PN 3

kO3: < 10, 700, > 103 M-1s-1

Pilot: Micropollutant Elimination

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4

Co

nc

en

tra

tio

n [

µg

/l]

Sampling point

No transformation of Chlorthalonil M12 by O3 or •OH

S OO

OH

NH2

O

Cl

ClCl

N

PN1 PN2 PN3 Complete ozone consumption

AOP O3/H2O2 , O3 4 mg/L, H2O2 17 mg/L DOC 1 mg/L, Alkalinity: 0.4 mM, pH: 7

Summary of Pilot Study

(Preozonation)

Intermediate disinfection

Intermediate oxidation efficiency

Bromate formation at high ozone doses

O3

Flocculation + UF

O3

(Postozonation)

Good disinfection

Lowered oxidation efficiency

Increased bromate formation

O3 + H2O2

(Post AOP)

Poor disinfection

High oxidation efficiency

Bromate formation can be controlled

Reservoir

Synergy via switch between two modi

Disinfection modus Oxidation modus

Full-Scale Implementation

45

Elimination of pharmaceutical residues in

municipal wastewater treatment plants

(WWTP: Schwerte, Bad Sassendorf & Duisburg-Vierlinden)

Institut für Siedlungswasserwirtschaft und Abfalltechnik

Lehrstuhl für Siedlungswasser- wirtschaft und Umwelttechnik

Abteilung für Hygiene, Sozial- und Umweltmedizin

Project management: Dr. Thomas Grünebaum (Ruhrverband, Essen)

Research projects „Reine Ruhr“

Final report: http://www.lanuv.nrw.de/wasser/abwasser/forschung/abwa

sser.htm

Elimination of Selected Target Compounds in Large Scale WWTP

2 mg Ozone/L, zspec = 0.36

0

10

20

30

40

50

60

70

80

90

100

Elim

inati

on

[%

]

n.d.

© Jochen Türk, IUTA

0

10

20

30

40

50

60

70

80

90

100

Elim

ina

tio

n [

%]

5 mg Ozone/L, zspec = 0.91

Take-home Messages

Oxidative Processes can be used to meet (additional)

goals of water and wastewater treatment

Optimized technical use requires a profound

understanding of chemistry of oxidant species

including formation of oxidation byproducts

For micropollutant elimination detailed knowledge of

transformation reaction is needed but enormous

effort needed

Comprehensive economical and effect-orientied

evaluations are still largely lacking

Acknowledgements

• Current and Previous Coworkers in Oxidative Processes: Alexandra Jarocki, Alexandra Beermann, Maike Cyris, Agnes Tekle-Rötering, Sebastian Kowal, Alaa Salma, Myint Sein, Clemens von Sonntag, Jochen Türk, numerous students

• Collaborators: Urs von Gunten, Georges Kraus, Jean-Paul Lickes, Stefan Panglisch, André Tatzel

• Funding: Deutsche Forschungsgemeinschaft, BMWi/AiF, BMBF, Deutsche Bundesstiftung Umwelt, Wasserchemische Gesellschaft, EU MC-ITN ATWARM

ANAKON 2011, Zürich Wasser 2012, Neu-Ulm