Optical Imaging Based on Quantum Technologies · Carl Zeiss AG, Nils Trautmann, Ulrich Vogl,...

Post on 13-Sep-2020

10 views 1 download

Transcript of Optical Imaging Based on Quantum Technologies · Carl Zeiss AG, Nils Trautmann, Ulrich Vogl,...

Optical imaging based on Quantum Technologies

2019-05-08

Nils Trautmann, Ulrich Vogl, Michael Totzeck

22019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

We might have seen each other already….

ZEISS in FY 2018

5.82 bn€ revenue

772 m€ EBIT

~30.000 employees

450 Patent-Appl.

11% R&D invest

25 global R&D sites

32019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

Optics is an enabler

Better results of research

Better healthBetter digital technology

Better perception

Better vision

Better production

42019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

Of course we want more(Selection. No claim for completeness.)

Area Vision

Biomedical Research Technology

Medical Technology

Semiconductor Manufacturing

• Fast 3D-imaging at molecular resolution

• Imaging through scattering media

• Functional imaging (currents, chemistry, mechanics,

development,…)

• Highly specific tissue differentiation

• Continue Moore’s law (sub 7nm nodes)

• High resolution 3D inspection and printing

52019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

A new wave of Quantum Technologies is set out to provide market shaping innovations

1st wave of

Quantum

Technologies

2nd wave of

Quantum

Technologies

• Quantum Technologies are

already the basis of many

branches of industry

• This technologies are based

harnessing on quantum effects

in macroscopic systems

Applic

ations

Based on the ability to control

individual quantum systems

Atoms Ions

NV

centers Photons

Stimulated

emission

Spontaneous

emission

Electronic band

structure

TRUMPF

Laser Fluorescence

Imaging

ZEISS

Semiconductor

Quantu

m

syste

ms

62019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

The 2nd Wave of Quantum Technologies will be commercialized.The question is when?

Computing

Imaging

Communication

Sensing

& Metrology Qu

an

tum

me

ch

an

ics

im

po

se

s t

he

ult

ima

te lim

ito

n h

ow

• How fast we can solve

computational problems?

• How efficiently we can

compute?

• How efficiently we can

transmit information?

• How secure

communication can be?

• How much information

can be extracted per

photon (sensitivity,

resolution, …)?

• How precise we can

measure?

• How sensitive we can

become?

We will approach

the limits imposed

by Quantum

Mechanics

The question is

when

How close are we?

82019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

You can look at the Hype CycleQuantum Computing is still on its way up

https://www.fourquadrant.com/gartner-hype-cycles-magic-quadrants/

Quantum

Computing

92019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

0

200

400

600

800

1.000

1.200

1.400

1.600

1.800

2.000

2.200

2.400

2004 2011

Pate

nt a

pp

licatio

ns p

er y

ear

200320011999 20152000 2002 2005 2006 20092007 2008 2010 2012 2013 20172014 2016 2018

You can look at the number of patent applicationsThe number of QT related patent applications is rising rapidly

Source: Internal patent screening

102019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

You can ask expertsQuantum technologies have vastly different readiness levels

https://www.zeiss.com/symposium

expectations according to

the ~300 participants0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fiber-based QKD

NV centers

Time to first commercial product (in years)

Fully error-corrected QCQuantum annealing

Non error-corrected QC

Quantum random

number generators Satellite-based QKD

Quantum

repeater

Matter wave

interferometers

OPAMsOptical clocks

Squeezed light

Cavity optomechanics

Ghost Imaging

Quantum lithographyNV AFM

microscopes Quantum

multiphoton microscopy

Computing

Commu-

nication

Sensing &

metrology

Imaging

Today’s

focus

112019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

You can ask expertsQuantum technologies have vastly different readiness levels

https://www.zeiss.com/symposium

expectations according to

the ~300 participants0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fiber-based QKD

NV centers

Time to first commercial product (in years)

Fully error-corrected QCQuantum annealing

Non error-corrected QC

Quantum random

number generators Satellite-based QKD

Quantum

repeater

Matter wave

interferometers

OPAMsOptical clocks

Squeezed light

Cavity optomechanics

Ghost Imaging

Quantum lithographyNV AFM

microscopes Quantum

multiphoton microscopy

Computing

Commu-

nication

Sensing &

metrology

Imaging

Today’s

focus

For successful

commercialization it is

needed to either:

• open up new areas

of application

• Improve

specifications by an

order of magnitude

122019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

So let’s get more concrete.How much can quantum technology help to make optics with …

… higher resolution

… higher sensitivity

… less photons

… faster

… new degrees of freedom

… deeper penetration

… new modalities

Ca

n q

ua

ntu

m t

ec

hn

olo

gy

he

lp t

o m

ak

e o

pti

cs

wit

h

132019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

Can entangled photons be used to achieve Quantum Superresolution?

1st proposal: Agedi N. Boto et al, Quantum Interferometric Optical Lithography:

Exploiting Entanglement to Beat the Diffraction Limit, PRL 85, 2733 (2000)

Proof of Principle in 2003

| 1

| 1

| 2,0

| 0,2

2x resolution

Entangled photons allow a resolution

improvement by the factor N using N00N

states

But …

• N>2 difficult to achieve

• STED and PALM can reach 20-50nm resolution

• EUV lithography with 13.5 nm wavelength for

IC volume productionreticle (mask, object)

wafer

(image)

P ~ 200 W

Quantum lithography

-

-

-

142019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

Quantum Supersensitivity!

1st proposal: Agedi N. Boto et al, Quantum Interferometric Optical Lithography:

Exploiting Entanglement to Beat the Diffraction Limit, PRL 85, 2733 (2000)

Proof of Principle in 2003

| 1

| 1

| 2,0

| 0,2

2x resolution

Entangled photons allow a resolution

improvement by the factor N using N00N

states

Quantum lithography

SNR improvement by 1,35

Ono, T., Okamoto, R., & Takeuchi, S. (2014). An

Entanglement-Enhanced Microscope. Nature

Communications, 4, 1–7. https://doi.org/10.1038/ncomms3426

E.g. Quantum Q-DICsensitivity

• N>2 difficult to achieve-

152019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

Could we use photon correlations to achieve quantum superresolution?

Photon statistics

• Coherent states: LaserGlauber, Roy J. "The quantum

theory of optical coherence." Physical

Review 130 (1963).

• Photon bunching:

Thermal lightMorgan, B. L., and L. Mandel.

"Measurement of photon bunching in a

thermal light beam." PRL 16 (1966).

• Photon anti-bunching:

Single emitterKimble, H. Jeff, Mario Dagenais, and

Leonard Mandel. "Photon antibunching

in resonance fluorescence." PRL 39

(1977).

Standard imaging• Lasers and thermal sources widely used.

• Bunching of thermal light explicitly used in

some ghost-imaging schemes.

R. Tenne, and D. Oron “Super-Resolution meets Quantum Optics”.

Imaging & Microscopy 3/2018

Temporal stream of single

photons

Anti-bunching microscopy

Correlation enhanced STORM

162019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

Quantum technology could help to achieve higher resolution and higher sensitivity

…higher resolution Anti-bunching microcopy, …

… higher sensitivity Q-interferometry

… less photons

… faster

… new degrees of freedom

… deeper penetration

… new modalities

()

()C

an

qu

an

tum

te

ch

no

log

y

he

lp t

o m

ak

e o

pti

cs

wit

h

172019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

“ classical” ZEISS light

sheet microscopy

Low light imaginguse of spatial correlation of entangled photons for sub-shot-noise imaging

Bleaching

Phototoxity

IF

# images

1

020

bio

activity

1

020# images

Ghost imaging

(<N>=20)

P. A. Morris et al., “Imaging with a small number of

photons”, Nature Communications 2015,6:5913

ICCD

182019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

Quantum technology could help to reduce the number of photons needed for imaging

…higher resolution Anti-bunching microcopy, …

… higher sensitivity Q-interferometry

… less photons Ghost imaging

… faster

… new degrees of freedom Ghost imaging/Idler interference

… deeper penetration Q-Multiphoton microscopy

… new modalities NV centers

()

()

()C

an

qu

an

tum

te

ch

no

log

y

he

lp t

o m

ak

e o

pti

cs

wit

h

192019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

Could it also be faster?

…higher resolution Anti-bunching microcopy, …

… higher sensitivity Q-Interferometry

… less photons Ghost imaging

… faster

… new degrees of freedom

… deeper penetration

… new modalities

()

()

()

Ca

n q

ua

ntu

m t

ec

hn

olo

gy

he

lp t

o m

ak

e o

pti

cs

wit

h

202019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

Interesting route: Separation of light-object from light-detector interactionNondegenerate ghost imaging

SiAu

R.S Aspden et al, “Photon-sparse microscopy: visible light imaging

using infrared illumination”, Optica 2 (2015) 1049-1052

G. Barreto et al, Quantum imaging with undetected photons,

Nature 512 (2014) 409-412

Spatial correlation IR-VIS Idler interference

212019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

Quantum technology could open up new degrees of freedom designing an imaging system

…higher resolution Anti-bunching microcopy, …

… higher sensitivity Q-Interferometry

… less photons Ghost imaging

… faster

… new degrees of freedom Ghost imaging/Idler interference

… deeper penetration

… new modalities

()

()

()

Ca

n q

ua

ntu

m t

ec

hn

olo

gy

he

lp t

o m

ak

e o

pti

cs

wit

h

222019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

“classical” two photon microscopy

Can quantum two photon microscopy enable deeper penetration

+ Inherently3D No pinhole needed, no loss of photons

+ IR excitation wavelength deep penetration (500 µm)

- High photon flux needed because of fluorescence~I2

1 photon 2 photon

Image source: Elisa May, Uni Konstanz

+

+

-

Quantum two photon microscopy

+ Like classical two photon microscopy

+ Theory: Significantly reduced light level

- Praxis: -Low photon flux

-Decorrelation hindered increased cross section

M.C. Teich, B.E.A. Saleh, “Entangled-Photon Microscopy”, "Mikroskopie s

kvantovĕ provázanými fotony," Československý časopis pro fyziku 47, 3-8

(1997).

+

+

-

232019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

Entangled photons could be used to achieve deeper penetration of tissue.However, with some practical limitations!

…higher resolution Anti-bunching microcopy, …

… higher sensitivity Q-interferometry

… less photons Ghost imaging

… faster

… new degrees of freedom Ghost imaging/Idler interference

… deeper penetration Q-multiphoton microscopy

… new modalities

()

()

()

()

Ca

n q

ua

ntu

m t

ec

hn

olo

gy

he

lp t

o m

ak

e o

pti

cs

wit

h

242019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

How about new imaging modalities?

…higher resolution Anti-bunching microcopy, …

… higher sensitivity Q-interferometry

… less photons Ghost imaging

… faster

… new degrees of freedom Ghost imaging/Idler interference

… deeper penetration Q-multiphoton microscopy

… new modalities

()

()

()

()

Ca

n q

ua

ntu

m t

ec

hn

olo

gy

he

lp t

o m

ak

e o

pti

cs

wit

h

?

252019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

Nitrogen vacancy centers allow to measure the magnetic fields with high precision under ambient conditions by optical means

Measuring element Measuring principle Readout

Nitro

gen v

acancy

cente

r in

dia

mond

Similar

behavior

Dis

cre

te level

str

uctu

re

Magnetic field causes level

shifts (Zeeman-Effect)

Optical readout

• Optical readout allows for a

measurement of the shift of the

spectral lines

• Magnetic field can be deduced

from frequency shift of optical

transitions

Barry, J. F., et al. (2016)

PNAS, 113(49), 14133-14138.

Maletinsky, P., et al.. (2012)

Nature nano., 7(5), 320

Rondin, L., et al. (2014).

Rep. Prog. Phys., 77(5), 056503.

262019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

NV microscopes might enable new imaging modalities

… higher resolution

… higher sensitivity

… less photons

… faster

… new degrees of

freedom

… deeper penetration

… new modalities

NV microscopes

Wide field Scanning probe

Ca

n q

ua

ntu

m t

ec

hn

olo

gy

he

lp t

o m

ak

e o

pti

cs

wit

h

Steinert, S., et al. (2010)

Rev. Sci. Instrum. 81

Maletinsky, P., et al.. (2012)

Nature nano., 7(5), 320

Making currents in ICs visible

Nowodzinski

et al.

Magnetic nanoparticles Magnetic images of meteorites

Glenn, D. R., et al. (2015)

Nature methods, 12(8), 736. Fu, Glenn, et al. (2014) Science

()

()

()

()

272019-05-08Carl Zeiss AG, Nils Trautmann, Ulrich Vogl, Michael Totzeck

In summary

Current state of

Quantum

Technologies

• QC/QT is approaching the peak of inflated expectations

• The number of QT related patent applications is rising

rapidly

• Quantum technologies have vastly different readiness

levels

Our initial

evaluation

of optical use

cases

…higher resolution Anti-bunching microcopy, …

… higher sensitivity Q-interferometry

… less photons Ghost imaging

… faster

… new degrees of freedom Ghost imaging/Idler interference

… deeper penetration Q-multiphoton microscopy

… new modalities NV centers

()

()

()

()