Member, Mapua Alumni Association Alberta Chapter RAY ALVARADO, P.E. PROCESS ENGINEERING PIPING...

Post on 15-Dec-2015

218 views 0 download

Tags:

Transcript of Member, Mapua Alumni Association Alberta Chapter RAY ALVARADO, P.E. PROCESS ENGINEERING PIPING...

Member, Mapua Alumni Association

Alberta Chapter

RAY ALVARADO, P.E.

PROCESS ENGINEERINGPIPING ENGINEERINGPIPELINE ENGINEERING

Presentation Breakdown

INTRODUCTION

PROCESS ENGINEERING

PIPING ENGINEERING

PIPELINE ENGINEERING

Acronyms

CAE – Computer Aided Engineering CAD – Computer Aided Design HMB – Heat and Mass Balance, a Process activity CFD – Computational Fluid Dynamics FEA – Finite Element Analysis PFD – Process Flow Diagram P&ID – Piping and Instrumentation Diagram LDT – Line Designation Table ROW – Right of Way, for pipeline routing HDD – Horizontal Directional Drilling, for pipeline

crossing HVAC/R – Heating, Ventilation, Air Conditioning &

Refrigeration

PROCESS ENGINEERING

PROCESS ENGINEERING

PROCESS ENGINEERING - an early project activity for analysis of physical separation or chemical conversion. It follows project definition and early financial studies. System-wide Process simulation nowadays is computer-aided e.g. heat-and-mass balances, logical block flows, control philosophies, and equipment selection.

Important Deliverables: Process Flow Diagrams(PFDs) - schematic showing major

process equipment, main fluid flows, and basic stream characteristics (pressure, level, temp., flow).

Piping and Instrumentation Diagrams(P&IDs) - schematics with much more detail and confirmed data. Shown here are process condition limitations, major machinery specifications, minor equipment data, pipe size/details, instrumentation types, and more precise controls/automation.

Line Designation Tables (LDTs) - spreadsheet report showing details of every piping section e.g. start-end point, process variables, and other mechanical data.

PROCESS ENGINEERING

Usual entry-level positions: Chemical Process Engineer Mechanical Process Engineer Process Simulation Specialist

Minimum Skill Sets for a Junior Process Engineer: Undergraduate degree in Chemical Engineering,

Mechanical Engineering, or Chemistry-related academic programs.

Basic knowledge of Fluid Statics/Dynamics, Thermodynamics, Heat Transfer, and Chemical Unit Operations.

Supplemental knowledge in Process Equipment Design, Distillation Theory, Stoichiometry, and Chemical Reactions.

PROCESS ENGINEERINGCHEMCAD Process Simulation, Screen Images

PROCESS ENGINEERINGHeat and Mass Balance (HMB) Study, Selexol Process

PROCESS ENGINEERINGEarly concept of an oil refinery

PROCESS ENGINEERINGExample of Process Flow Diagram (PFD)

PROCESS ENGINEERINGExample of Piping & Instrumentation Diagram (P&ID)

PROCESS ENGINEERING

Process Engineering and Beyond: Next-Generation Process Simulators…..higher

processing speeds, capable of more simultaneous calculations, broader chemical database.

Multi-Physics Tools to the Mainstream……these software can now be fully integrated with existing Process Simulators.

Intelligent 2D Diagrams……embedded data on PFDs and P&IDs will pop up once a particular element is clicked or highlighted on the drawing.

PIPING ENGINEERING

PIPING ENGINEERING

Screen shots of CAEPIPE, a widely-used pipe stress analysis software, showing the Input Geometry:

Piping layoutimported from CAD 3D Model, or manually re-created

PIPING ENGINEERING

Stress Output…….watch for the “Reds”!

RED areas have higher calculated stresses (needs re-work)

PIPING ENGINEERING

Animation features…...it moves!

Shows areas of excessive movement, direction of thermal growth, lift-off atsupport points, etc.

PIPING ENGINEERINGIf not analysed properly, pipes may…..

…deform and collapse

….or lift-off from supports

PIPING ENGINEERING

PIPING ENGINEERING - a Mechanical sub-discipline mainly to validate Piping Design’s pipe-fittings layout, inside enclosed industrial areas, by computational analysis or technical reasoning.

Such activities follow right after critical and major piping are completely laid out and supported.

PIPE - a closed cylindrical conduit for moving fluid (liquid, gas, solid particles) from one location to another, either by gravity or applied pressure.

FITTINGS - are transition elements for connecting pipes into an assembly or conduit network. Elbows, tees, flanges, reducers, and couplings are examples.

PIPING - logical assembly of pipes, fittings, valves, and supports.

PIPING ENGINEERING

Important Deliverables: Static & Dynamic Pipe Stress Analysis,

Reports - computer-aided, hand calculations, and “by-inspection” judgement.

Finite Element Analysis (FEA) - on equipment nozzles, header branches, and support attachments.

General Pressure Calculations – wall thickness, branch reinforcement, leak-strength testing, and hot-tap calculations.

Sizing of Engineered Restraints - for spring supports, rollers, sway braces, sway struts, seismic snubbers, etc.

Detailing of Special Pipe Supports - as required by stress analysis results or vendor special requests.

PIPING ENGINEERINGPlant Piping

3D layout of piping and pressure vessels

Offshore platform piping and equipment

PIPING ENGINEERING

Usual entry-level positions: Piping Design Engineer Pipe Stress Engineer Piping Materials Engineer

Minimum Skill Sets for a Junior Piping Engineer: Undergraduate degree in Mechanical Engineering,

Chemical Engineering, or related sub-discipline. Basic knowledge of Structural Mechanics, Strength of

Materials, Fluid Dynamics, Machine Elements Design, Materials Science, and Welding Technology.

Supplemental knowledge in Chemical Processes, Heat Transfer, Thermodynamics, and Stationary/Rotating Mechanical Equipment.

PIPING ENGINEERINGExamples of Engineered Restraints

Constant spring can

Variable spring hangers

Sway strut assembly

Seismic snubber

Sway brace assembly

PIPING ENGINEERINGExample of Custom-Ordered Supports

Support clamp withfabric lining, forvibrating lines

Rigid hanger clamp, for pre-insulated line

Pipe clamp and shoe, forpre-insulated cold line

PIPING ENGINEERING

Piping Engineering and Beyond: Full Integration of computational Analysis Software

with 3D CAD Model……seamless and bi-directional compatibility of both CAD and CAE activities, thus substantial savings of time and resources.

FEA/CFD Multi-Physics to the Mainstream……complex analysis and engineering calculations can now be simultaneously performed e.g. structural mechanics, fluid flow, vibration, and heat transfer.

Opportunities in Oilfield Frontier Areas…….more complex piping needs for fixed offshore platforms, floating FPSOs, marine tanker, and Arctic process modules.

PIPING ENGINEERINGFEA & Multi-Physics Analysis Tools

Multi-Physics Analysis(thermal + structural)of vessel

FEA of stab-inbranch

FEA ofcrimped pipe

PIPING ENGINEERINGCFD & Multi-Physics Analysis Tools

ANSYS 3D Multi-Physics (wind +thermal + struct.) around reactors

ABAQUS 2D Multi-Physics (fluid flow + thermal)

COMSOL 3D Multi-Physics (fluid flow + thermal) through elbow

PIPELINE ENGINEERING

PIPELINE ENGINEERING

PIPELINE ENGINEERING - a Mechanical sub-discipline mainly to validate Pipeline Design’s overland or seafloor routing, by computational analysis or technical reasoning, outside the fenced industrial area.

Such activities usually start after initial project development, geodetic (land) or bathymetric (ocean) surveys, and preliminary right-of-way routing.

Pipelines are generally classified into: Land Pipelines, Underground (Buried) Land Pipelines, Aboveground Underwater Pipelines

Important Deliverables/Involvement: Hydraulic Analysis, Steady-State and/or Transient (Surge) Pipeline Stress Analysis HDD (Horizontal Directional Drilling) and Crossing Studies Lateral and Upheaval Buckling Analysis

PIPELINE ENGINEERING

Usual entry-level positions: Pipeline Design Engineer Pipeline Stress Engineer Pipeline Hydraulics Engineer

Minimum Skill Sets for a Junior Pipeline Engineer: Undergraduate degree in Mechanical or Civil Engineering. Basic knowledge of Engineering Surveying, Structural

Mechanics, Strength of Materials, Fluid Dynamics, Machine Elements Design, Materials Science, and Welding Technology.

Supplemental knowledge of Heat Transfer, Thermodynamics, and Stationary-Rotating Mechanical Equipment.

PIPELINE ENGINEERINGLand Pipeline Routing

Natural gas pipeline right-of-way Routing Study taken from terrain survey

Plan-and-Profile Drawing,with data from routing studyand terrain survey

PIPELINE ENGINEERINGPipeline Analysis

River crossing…..suspension bridge and cable stay details for Trans-Alaska Pipeline

Seismic analysis….and mitigation measures for Trans-Alaska Pipeline while crossing the Denali fault line

PIPELINE ENGINEERINGEngineered Pipeline Supports

Detail of H-Supportand side bumpers

Trans-Alaska Pipeline ammonia-filled H-Support, with cooling fins, pile driven through permafrost

PIPELINE ENGINEERINGUnderwater Pipelines

Underwater gas pipelineon uneven seafloor, with free-spanned sections

Underwater pipelines, for oil-and-gas production gathering

PIPELINE ENGINEERINGSeafloor Routing Study of underwater oil pipeline

PIPELINE ENGINEERINGPipeline Stability Analysis & FEA

Overstress at seabed touchdownarea, due to excessive bendingfrom pipelay surface vessel

PIPELINE ENGINEERING

Pipeline Engineering and Beyond: Integration of Pipeline Surveys with Routing

Selection……in intelligent 3D format, these related activities will be fully synchronized for accuracy and cost savings.

Pipeline 3D Models Imported Into Multi-Physics Simulation…..like stress analysis, hydraulic surge, flow assurance, global buckling, or ice gouging hazards.

Deeper, Colder……in search for oil and gas, the industry is pushing the limits of pipeline technology beyond the world’s Continental Shelf and in harsher Arctic environments.

PIPELINE ENGINEERINGArctic Pipelines, Ice Gouge Hazard Analysis & FEA

Burial depth is critical, to prevent pipeline damage

Gouged seafloor imagingBerg gouging

Sea ice gouging

PIPELINE ENGINEERINGCFD & Multi-Physics Analysis Tools (ANSYS)

3D CFD (fluid flow +thermal) at junction

3D CFD (fluid flow +structural) through valve

3D CFD (fluid flowonly) through blades

Trivia Question:

What’s the difference between “PIPING” and “PIPELINES”?

Other than spelling, of course.

Answers:

PIPING Inside the enclosed industrial area or fenced plot limits. Physical configuration can be very complex. Mostly of short length, specified in feet or meters. Uses lower grade steel, thus pipe wall is thicker. Can operate at very high temperatures and pressures, or

conversely at cryogenic temperatures and partial vacuum.PIPELINES Outside the enclosed industrial area or fenced plot limits. Physical configuration is usually simple, from point A to point

B. Almost always very long, specified in miles or kilometres. Uses higher grade steel, thus pipe wall is thinner. Usually operates at moderate temperatures and high

pressures.