Me - Princeton University - Home

Post on 03-Feb-2022

2 views 0 download

Transcript of Me - Princeton University - Home

MacMillan Group Meeting!5-20-09!

by!

Anthony Casarez!

H !

Me

H

!Me

Kurt Alder!

!" Born: Königshütte, Upper Silesia in southern Poland, on the 10th of July 1902.!

!" Education: Began chemistry at the University of Berlin in 1922 then finished his PhD in 1926 at the University of Kiel for work supervised by Otto Diels.!

!" Notable Award: Nobel Prize in Chemistry (1950) with Otto Diels for the 4 + 2 cycloaddition (Diels-

Alder) discovered in 1928. !

A Pericyclic Reaction!

Alder, K.; Pascher, F.; Schmitz, A. Ber. Dtsch. Chem. Ges. 1943, 76, 27.!

!" Direct translated quote: !

!“It is concluded that the addition occurs at the carbon atom adjacent to the double bond (ene). During the course of the reaction a hydrogen atom is detached and transposed to the region of the

maleic acid anhydride (enophile).”!

O

O

O

!O

O

O

H

!" Dr. Alder was unaware that his discovery was mechanistically very similar to the Diels-Alder which

would later win him the Nobel Prize.!

Mechanistic Comparison!

!" Diels-Alder! !" Alder-Ene!

HOMO

LUMO

O

O

O

O

O

O

!

HOMO

LUMO

H

O

O

O

H!

O

O

O

!" Normally, both transformations occur with the HOMO of the diene/ene and the LUMO of the

dienophile/enophile. Lewis acids also work to catalyze the Alder-ene reaction.!

In the Beginning!

!" Thermal Alder-ene!

Huntsman et al. J. Org. Chem., 1962, 27, 1983.!

Me

Me457 °C

35%

Me

Me457 °C

35%

MeMe

In the Beginning!

Huntsman et al. J. Org. Chem., 1962, 27, 1983.!

Me

490 °C

25%

Me Me

Me

400 °C

82%

CO2Me CO2Me

!" Thermal Alder-ene!

The Metallo-Ene!

!" Type I!

Cl

MeMe

Mg, THF, 80 °C

PhNCO, 86%

NHPh

O

!" Type II!

Felkin et al. Tetrahedron Lett., 1972, 22, 2285.!

MgBr Me

ether, reflux

67%

Oppolzer et al. J. Am. Chem. Soc., 1982, 104, 6476.!

The Metallo-Ene!

!" Type I!

Cl

MeMe

Mg, THF, 80 °C

PhNCO, 86%

NHPh

O

!" Type II!

Felkin et al. Tetrahedron Lett., 1972, 22, 2285.!

Mg

Me

Mg

Me

PhNCO

MgBr Me

ether, reflux

67%

The Metallo-Ene: M = Mg, Li, Zn!

Type I!

Ring formation: 5 > 6 >> 7!

Selectivity: syn ring juncture!

Heterocycles: problematic!

Type II!

Ring formation: 6 > 5 # 7 >> 8!

Selectivity: syn ring juncture!

Heterocycles: when M = Zn!

X

Me

XMe

Me

Me

"M" "M"

Total Synthesis of Khusimone!

Oppolzer et al. J. Am. Chem. Soc., 1982, 104, 6478.!

O

Me

Me

CO2Et

LDA, THF, -78 °C

then allyl-Br, -40 °C, 50%

O

CO2Et

Me

HOOH

1. TsOH,

2. NaOEt, EtOH, 74%

97%CO2Et

Me Me

H

O

O1. LAH, ether, 92%

2. MsCl, pyr, then LiCl (aq) 51%

Me Me

H

O

O

Cl

Mg0, THF, 60 °C

then CO2, -10 °C, 82%

OO

H

H Me

Me

CO2H

!" Can the diastereoselectivity be accounted for?!

Transition State Analysis!

Oppolzer et al. J. Am. Chem. Soc., 1982, 104, 6478.!

!" Chair conformation

experiences the least

steric interaction!

H

MgCl

Me

Me

OO

H

OO

H

H

MgCl

ClMg

Me

MeHH

OO

OO

H

H

MgCl

X

Total Synthesis of Khusimone!

Oppolzer et al. J. Am. Chem. Soc., 1982, 104, 6478.!

O

Me

Me

CO2Et

LDA, THF, -78 °C

then allyl-Br, -40 °C, 50%

O

CO2Et

Me

HOOH

1. TsOH,

2. NaOEt, EtOH, 74%

97%CO2Et

Me Me

H

O

O1. LAH, ether, 92%

2. MsCl, pyr, then LiCl (aq) 51%

Me Me

H

O

O

Cl

Mg0, THF, 60 °C

then CO2, -10 °C, 82%

OO

H

H Me

Me

1. LAH, THF, 92%

2. MsCl, TEA, CH2Cl2, then1 N HCl (aq)/ether, 93%

H

H Me

Me

O

CO2HOMs

t-BuOK, t-BuOH/PhH

98%H Me

Me

O

(+)-Khusimone9-steps, 11% overall yield

The Catalytic Metallo-Ene: M = Zn!

Marek et al. J. Org. Chem., 1995, 360, 863.!

TBAF

KF

Me

OH

Me

OSithexMe2

OSthexMe2

SiMe3

nBuLi, THF, -70 °C

ZnBr2, warmed to 20 °C then HCl, 80%

Me

OSithexMe2

SiMe3

H •

SiMe3

ZnBr

RO OSithexMe2

SiMe3

ZnBr

!" Product can be differentially desilated.!

The Catalytic Metallo-Ene: M = Zn!

Marek et al. J. Org. Chem., 1995, 360, 863.!

TBAF

KF

Me

OH

Me

OSithexMe2

OSthexMe2

SiMe3

nBuLi, THF, -70 °C

ZnBr2, warmed to 20 °C then HCl, 80%

Me

OSithexMe2

SiMe3

R

SiMe3

nBuLi, THF, -70 °C

ZnBr2, warmed to 20 °C R

SiMe3

ZnBr

I2

HCl

R

Me

R

R = CH2t-Bu

I

R = Me

!" Product can be differentially desilated.!

!" Alkyl-Zn can be hydrolyzed or trapped with electrophiles.!

!" Can also be used directly in cross-coupling reactions.!

Tandem Zn Promoted 1,2-Brook Rearrangement Metallo-Ene!

Marek et al. Org. Lett., 2009, ASAP.!

t-But-Bu

OH

N

OH

L =

H •

R

ZnBr

Me3SiO OSiMe3

R

ZnBr

Me3SiO

ZnEt

(CH2)3CH=CH2

R

O

SiMe3

1. ZnEt2, 20 mol% L* Tol, rt, 12 h

2. THF, 40 °C, 24 h3. HCl, TBAF

Me

OH

RHR R = Ph, 92%, >99:1 dr, 81:19 erR = Hex, 91%, >99:1 dr, 77:23 er

Tandem Zn Promoted 1,2-Brook Rearrangement Metallo-Ene!

Marek et al. Org. Lett., 2009, ASAP.!

t-But-Bu

OH

N

OH

L =

O

SiMe3

1. ZnEt2, 20 mol% L* Tol, rt, 12 h

2. THF, 40 °C, 24 h3. HCl, TBAF

Me

OH

RHR R = Ph, 92%, >99:1 dr, 81:19 erR = Hex, 91%, >99:1 dr, 77:23 er

O

SiMe3

1. ZnEt2, 20 mol% L* Tol, rt, 12 h

2. THF, 40 °C, 24 h3. HCl, TBAF

OH

RHPh

SiMe3

Me3Si

79%, 77:23 er

The Catalytic Metallo-Ene: M = Ni!

Oppolzer et al. Tetrahedron Lett., 1988, 29, 6433.!

36 h

58%

!" The same trends are observed for Pd.!

AcO

TsN Ni(COD)2, dppb (10 mol%) rt, 6 h, 88%

TsN

H

H

NTs

NiIITHF

AcO

TsN Ni(COD)2, dppb (10 mol%)

TsN

H

H

NTs

NiII

THFX

The Catalytic Metallo-Ene: M = Pd!

Oppolzer et al. Tetrahedron Lett., 1988, 29, 4705.!

AcO

E E

AcO

E E

AcO

Cl

SN2

!-ally-Pd

Pd(PPh3)4, AcOH

70 °C, 72%

E E

Pd(PPh3)4, AcOH

70 °C, 80%

E E

H

H

H

H

The Catalytic Metallo-Ene: M = Pd!

Oppolzer et al. Tetrahedron Lett., 1988, 29, 4705.!

AcO

E E

AcO

E E

AcO

Cl

SN2

!-ally-Pd

!" Also works to form cis or trans decalin systems:!

Pd(PPh3)4, AcOH

70 °C, 72%

E E

Pd(PPh3)4, AcOH

70 °C, 80%

E E

H

H

H

H

H

H

E EH

H

E E

or

Stereochemistry of Pd-Catalzed Metallo-Ene!

Oppolzer, W. Pure & Appl. Chem. 1990, 62, 1941.!

!" Terminal olefin results in loss of stereochemical integrity.!

!" E-alkene allows for transfer of stereochemistry.!

BocN

OAc

Pd(PPh3)4

AcOH, 70 °C

BocN

Pd

BocN

Pd

64%

BocN

(S)

racemic

BocN

Me

OAc

Pd(PPh3)4

AcOH, 70 °C

BocN

Me

Pd

BocN

Me Pd

H

64%

BocN

Me

H(S)(S)

> 99% ee

Stereochemistry of Pd-Catalzed Metallo-Ene!

Oppolzer, W. Pure & Appl. Chem. 1990, 62, 1941.!

!" Alkene geometry impacts expected outcome.!

76%

BocN

Me

H(R)

97% ee

BocN

OAc

Pd(PPh3)4

AcOH, 70 °C

BocN

Pd

BocN

Pd

(S)

Me

MeMeH

anti-!-allyl

BocN

Pd

MeH

BocN

Me

Pd

syn-!-allyl

Doing More in One Step!

Oppolzer et al. Tetrahedron Lett. 1989, 30, 5883.!

TsN

I

Ni(COD)2/dppb (25 mol%)

THF/MeOH 4:1CO (1 atm), rt

TsN

H

NiIILn

H

80%

TsN

H H

ONiIILn

TsN

H H

O

MeO2C

!" CO-insertion happens at both alkyl-Ni stages!

Doing More in One Step!

Oppolzer et al. Tetrahedron Lett. 1989, 30, 5883.!

TsN

I

Ni(COD)2/dppb (25 mol%)

THF/MeOH 4:1CO (1 atm), rt

TsN

H

NiIILn

TsN

H

ONiIILn

87%

TsN

H

O

MeO2C

TsN

I

Ni(CO)3/PPh3 (25 mol%)

THF/MeOH 4:1CO (1 atm), rt

TsN

NiIILn

TsN

MeO2C

69%

!" Changing the ligand allows for control of CO-insertion.!

Doing More in One Step!

Oppolzer et al. Tetrahedron Lett. 1989, 30, 5883.!

TFAN

AcO

Pd(dba)2/PPh3 (10 mol%)

AcOH, CO (1 atm)45 °C

TFAN

H

PdIILn

H

TFAN

H

CO2H

H

H2O

CH2N2, CH2Cl2

TFAN

H

CO2Me

H

70%

!" Pd-affords the trans-ring juncture.!

Models for Diastereoselectivity!

Oppolzer et al. Tetrahedron Lett. 1990, 31, 1265.!

NiII

H

H

TsN

L

L

PdII

H

H

L

LTFAN

!" Endo! !" Exo!

TFAN

H

CO2Me

H

TsN

H H

O

MeO2C

The Catalytic Metallo-Ene: M = Rh!

Oppolzer, W.; Furstner, A. Helv. Chim. Acta 1993, 76, 2329.!

X! n! Yield (%)!

NTs! 1! 80!

NTFA! 1! 83!

NCbz! 1! 63!

C(CO2Me)2! 1! 75!

C(SO2Ph)2! 1! 88!

NTs! 2! 65!

C(SO2Ph)2! 2! 55!

X

AcO

RhH(PPh3)4/P[Ph(OMe)3]3 2 mol% 4 mol%

AcOH, 80 °C

X

n n

PdII-Catalyzed Formal Alder-Ene!

Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1985, 107, 1781.!

EE

E

C6D6, 60 °C, 85%

Pd(OAc)2(PPh3)3 (5 mol%) EE

E

H

H

!" PdII is necessary for catalysis. !

!" Can be performed in one pot.!

OAcE

12 h, Then PdII, reflux 1.5 h, 68%

Pd(PPh3)4, NaH, THF, reflux EE

E

H

HE

E

PdII-Catalyzed Formal Alder-Ene!

Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1985, 107, 1781.!

!" 1,4-Diene observed with no allylic substitution outside of pendant ring.!

!" A trans-relationship results when allylic substitution exists inside the pendant ring.!

C6D6, 60 °C, 68%

Pd(OAc)2(PPh3)3 (5 mol%)E

E

E

E

MeMe

H

(CH2)8CH(OMe)2 C6D6, 60 °C, 71%

Pd(OAc)2(PPh3)3 (5 mol%)E

E

E

E

(CH2)8CH(OMe)2

Mechanistic Proposal!

Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1985, 107, 1781.!

E

E R'

R

PdII PdIV

E

E

RR'

HH

!"H elim.

!"H elim.

E

E

R R'

PdIV

H

E

E

R R'

PdIV

H

E

E

R R'

E

E

R R'

red.

elim.

red.

elim.

H

H

PdII

PdII

PdII-Catalyzed Formal Alder-Ene!

Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1985, 107, 1781.!

!" 1,3-Diene observed with allylic substitution outside of pendant ring.!

C6D6, 66 °C, 64%

Pd(OAc)2(PPh3)3 (5 mol%)

E

EE

E

C6D6, 66 °C, 71%

Pd(OAc)2(PPh3)3 (5 mol%)

E

EE

EO

O

O

O

C6D6, 66 °C, 80%

Pd(OAc)2(PPh3)3 (5 mol%)

E

EE

E R

Me

Me

R

Mechanistic Support for Palladacycle Pathway!

R

E

E

Pd

CO2Me

CO2MeMeO2C

MeO2C

PPh3, C6H6, 60 °C

E

E

E

E

R

R = Me, 59%, 2 : 3R = H, 54%

E

E

E

E

CO2Me

CO2Me

E

E

CO2Me

CO2Me

not

Pd

CO2Me

CO2MeMeO2C

MeO2C

P(o-OTol)3, 60 °C

CO2MeMeO2C

, DCE

Me

Me

Pd

CO2Me

CO2MeMeO2C

MeO2C

P(o-OTol)3, 60 °C, 83% Me

Me

CO2MeMeO2C

CO2Me

CO2Me Crossover expmt withCO2EtEtO2C

shows only acetylene incorporation.

, DCE

Trost, B. M.; Tanoury, G. J. J. Am. Chem. Soc. 1987, 109, 4753.!

Mechanistic Support for Palladacycle Pathway: Remote Binding!

Trost et al J. Am. Chem. Soc. 1994, 116, 4255.!

Cat!n = 1!

A:B!Yield!

n = 2!

A:B!Yield!

Pd(OAc)2! 21:1! 76! 1.1:1! 75!

Pd(OAc)2[P(o-Tol)3]2! >20:1! nd! 1:1.6! 74!

Pd(OAc)2(PPh3)2! 2.7:1! nd! 1:4.6! 81!

Pd(OAc)2(PPh3)3! 1:2.3! 24!

E

E

E

ECat

n

n

BA

E

E

n

PdIV

HaHb

Hb

PPh3

PdII-Catalyzed Formal Alder-Ene!

!" No reaction observed w/o AcOH!

Trost et al J. Am. Chem. Soc. 1994, 116, 4268.!

AcOH (5 mol%), rt, TOTP (5 mol%)

Pd2dba3CHCl3 (2.5 mol%), C6D6

Me

MeTBSO

Me

TBSO

Me

TBSO

88%, 7.5 : 1

PdII-Catalyzed Formal Alder-Ene!

!" No reaction observed w/o AcOH!

Trost et al J. Am. Chem. Soc. 1994, 116, 4268.!

AcOH (5 mol%), rt, TOTP (5 mol%)

Pd2dba3CHCl3 (2.5 mol%), C6D6

Me

MeTBSO

Me

TBSO

Me

TBSO

88%, 7.5 : 1

AcOH (5 mol%), rt, TOTP (5 mol%)

Pd2dba3CHCl3 (2.5 mol%), C6D6

R

R

E

E

E

E

95% 75%

c-Hex

E

E

86%

E

E

OMeMeO

E

E

OAcAcO

!" Sensitive functional groups also tolerated!

Mechanistic Proposal!

Trost et al J. Am. Chem. Soc. 1994, 116, 4268.!

E

E

R'R

PdII

H

OAc

E

E R'

R

E

E

R'R

PdIIOAc

E

E

R R'

PdII

H

H

E

E

R R'

Pd0 + AcOH

H-PdII-OAc

Predominent Product

Mechanistic Proposal!

E

E

R'R

PdII

H

OAc

E

E R'

R

E

E

R'R

PdIIOAc

E

E

R R'

PdII

H

H

E

E

R R'

Pd0 + AcOH

H-PdII-OAc

Predominent Product

Trost et al J. Am. Chem. Soc. 1994, 116, 4268.!

Mechanistic Proposal!

E

E

R'R

PdII

H

OAc

E

E R'

R

E

E

R'R

PdIIOAc

E

E

R R'

PdII

H

H

E

E

R R'

Pd0 + AcOH

H-PdII-OAc

Predominent Product

Trost et al J. Am. Chem. Soc. 1994, 116, 4268.!

Mechanistic Proposal!

E

E

R'R

PdII

H

OAc

E

E R'

R

E

E

R'R

PdIIOAc

E

E

R R'

PdII

H

H

E

E

R R'

Pd0 + AcOH

H-PdII-OAc

Predominent Product

Trost et al J. Am. Chem. Soc. 1994, 116, 4268.!

Mechanistic Proposal!

E

E

R'R

PdII

H

OAc

E

E R'

R

E

E

R'R

PdIIOAc

E

E

R R'

PdII

H

H

E

E

R R'

Pd0 + AcOH

H-PdII-OAc

Predominent Product

Trost et al J. Am. Chem. Soc. 1994, 116, 4268.!

Mechanistic Support for Hydro-Palladation Pathway!

Trost et al J. Am. Chem. Soc. 1987, 109, 3161.!

E

E

R R'

PdII

H

H

AcOH (1 eq), rt, TOTP (5 mol%), PMHS

Pd2dba3CHCl3 (2.5 mol%), C6H6

R

R

E

E

E

E

96% 75%

c-Hex

E

E

E

E

OAcAcO

AcOH (5 mol%), rt, AsPh3 (5 mol%)

OPd2dba3CHCl3 (2.5 mol%), CH2Cl2O

Ph

Ph

Ph

20%

Ph

Mechanistic Support for Hydro-Palladation Pathway!

Trost et al J. Am. Chem. Soc. 1987, 109, 3161.!

E

E

R R'

PdII

H

H

AcOH (1 eq), rt, TOTP (5 mol%), PMHS

Pd2dba3CHCl3 (2.5 mol%), C6H6

R

R

E

E

E

E

96% 75%

c-Hex

E

E

E

E

OAcAcO

rt, AsPh3 (5 mol%)

OPdOAc2(AsPh3)2 (5 mol%), CH2Cl2O

Ph

Ph

Ph

96%

Ph

Mechanistic Support for Hydro-Palladation Pathway!

Trost et al J. Am. Chem. Soc. 1987, 109, 3161.!

E

E

PdIIOAc

E

E

R R'

PdII

H

H

AcOH (1 eq), rt, TOTP (5 mol%), DSiEt3

Pd2dba3CHCl3 (2.5 mol%), C6H6

R

E

E

E

E D

AcOD (1 eq), rt, TOTP (5 mol%), PMHS

Pd2dba3CHCl3 (2.5 mol%), C6H6

R

E

E

E

E

D

A Much Cheaper Alternative: Fe!

Furstner et al. J. Am. Chem. Soc. 2008, 130, 1992.!

XCH2R2

R3

Fe0 Li O

O

Toluene, 90 °C

(5 mol%) 1

XR1

R1

H

R3

R2

Me

H

EE

97%, 6:1 trans/cis

Me

H

EE

93%, 5.8:1 trans/cis5 mol% 2

TsN

n-Pr

H

90%, 7.9:1 trans/cis

EE

80%

TsN

79%

Me

H

EE

97%, 6.3:1 trans/cis5 mol% 2

p-OMe-Ph

nn

On-Pr

H

82%, 20:1 trans/cis20 mol% 2

Ph

EE

79%, 15 mol% 1

A Much Cheaper Alternative: Fe!

Furstner et al. J. Am. Chem. Soc. 2008, 130, 1992.!

Fe0 Li N

N

Toluene, 90 °C

X

H

H

R

m

n

XH

R

m n

H

H

p-OMe-Ph

EE

50%, 10 mol% 2

(5 mol%) 2

H

HPh

EE

93%

TsN

H

HPh

60%, 10 mol% 2

Ph

E EH

H

68% 2.5:1 cis/trans10 mol% 2

Ph

EEH

H

63

Ph

EEH

H

95%

Me

EEH

H

93%

EEH

H

93%

Divergent Pathways to Observed Sterochemistry!

Furstner et al. J. Am. Chem. Soc. 2008, 130, 1992.!

!" Pseudo-axial approach affords cis-diastereomer!

!" Pseudo-equatorial approach affords trans-diastereomer!

trans!

cis!

H

Fe

E

E

R H

HR

EE

E E

R

H

Fe

H

R

E

E

R

EEH

H

R

E E H

HFe

E

E

Fe

H

H

R

R

E

E

Expectation of D-Labeling Study!

Furstner et al. J. Am. Chem. Soc. 2008, 130, 1992.!

Ph

E E

D

syn to D

anti to D

Ph

E E

HFe

D

Ph

EE

DFe

Ph

EE

D

Ph

E E

DFe

H Ph

E E

DFe

H

Ph

EE

HFeD

FePh

DH

EE

H

Ph

EE

DFeH

H

Ph

EE

HD

Ph

EE

DH

Ph

E E

HFe

D

H

Expectation of D-Labeling Study!

Furstner et al. J. Am. Chem. Soc. 2008, 130, 1992.!

Scrambling!

Ph

E E

D

syn to D

anti to D

Ph

E E

HFe

D

Ph

EE

DFe

Ph

EE

D

Ph

E E

DFe

H Ph

E E

DFe

H

Ph

EE

HFeD

FePh

DH

EE

H

Ph

EE

DFeH

H

Ph

EE

HD

Ph

EE

DH

Ph

E E

HFe

D

H

Expectation of D-Labeling Study!

Furstner et al. J. Am. Chem. Soc. 2008, 130, 1992.!

Scrambling!

D-Transfer!

Ph

E E

D

syn to D

anti to D

Ph

E E

HFe

D

Ph

EE

DFe

Ph

EE

D

Ph

E E

DFe

H Ph

E E

DFe

H

Ph

EE

HFeD

FePh

DH

EE

H

Ph

EE

DFeH

H

Ph

EE

HD

Ph

EE

DH

Ph

E E

HFe

D

H

!" If the metallacycle is the pathway for the

trans-ring juncture then deuterium should

be transferred.!

Expectation of D-Labeling Study!

Furstner et al. J. Am. Chem. Soc. 2008, 130, 1992.!

E E

Ph

D

H

Fe

H

D

EE

Ph

Ph

EE

HFe

D

Ph

EE

H

D

!" If the metallacycle is the pathway for the cis-ring juncture then hydrogen should be transferred.!

The Dramatic Conclusion!

Furstner et al. J. Am. Chem. Soc. 2008, 130, 1992.!

!" Deuterium labeling study supports a metallacyle intermediate.!

Ph

E E

D

Fe0 Li N

N

Toluene, 90 °C, 90%

(10 mol%) 2

HPh

EE

DH

E E

R

D

H

Fe0 Li N

N

Toluene, 90 °C, 82%

(10 mol%) 2

R

EE

H

D

Intermolecular Rh-Catalyzed Alder-Ene!

Brummond et al J. Am. Chem. Soc. 2002, 124, 15186.!

!" First report of high yield and selectivity to form cross-conjugated trienes.!

TsN

R2

Rh(CO)2Cl2 (2 mol%)

Toluene, rt

TsN

R2

TsN

C5H11

90%, 6:1 E/Z

TsN

93%

R1

R1

TsN

85%, 5:1 E/Z

C5H11

TMS

Intermolecular Rh-Catalyzed Alder-Ene!

Brummond et al J. Am. Chem. Soc. 2002, 124, 15186.!

!" Will This work with ene-allenes?!

Rh(CO)2Cl2 (5 mol%)

Toluene, rt

TsN

C6H13

TsNMe

C5H11

TsN

C7H15

or

TsNRhIII

C6H13

Intermolecular Rh-Catalyzed Cycloisomerization!

Brummond, K. M.; Chen, H.; Mitasev, B.; Casarez, A. D. Org. Lett. 2004, 6, 2161.!

!" Tetrahydroazepines are formed instead.!

Rh(CO)2Cl2 (5 mol%)

Toluene, rt

TsN

C6H13

TsN

C6H13

!" Product possessed interesting unsaturation for further functionalization.!

Intermolecular Rh-Catalyzed Cycloisomerization!

!" Selected azepine products!

Brummond, K. M.; Chen, H.; Mitasev, B.; Casarez, A. D. Org. Lett. 2004, 6, 2161.!Brummond, K. M.; Casarez, A. D. unpublished work.!

TsN

R3

R1

Rh(CO)2Cl2 (5-10 mol%)TsN

R3

R1

TsN

t-Bu

Me

Solvent, reflux

95%, DCE

TsN

t-Bu

SiMe2Bn

97%, DCE

TsN

t-Bu

Ph

95%, 1,4-Dioxane

TsN

Si(i-Pr)3

73%, 5.8:1 E/Z, 1,4-Dioxane

TsN

Me

85%, 1,4-Dioxane

Me TsN

t-Bu

86%, 1,4-Dioxane

Me

R2

R2

TsN

t-Bu

78%, 1,4-Dioxane

TsN

Si(i-Pr)3

69%, 1,4-Dioxane

Me

Two Plausible Mechanisms!

Me

N•

t-Bu

MeD

D

Ts

N •t-Bu

D

Ts

Rh-D

MeN

t-Bu

MeD

Rh-D

Ts

Rh(I) TsN

t-Bu

D

D

Me

N

Rh

Ts

H

H t-Bu

D

D

N

t-Bu

MeD

Rh-D

Ts

path A

path B

89%

Brummond, K. M.; Chen, H.; Mitasev, B.; Casarez, A. D. Org. Lett. 2004, 6, 2161.!

Intermolecular Ru-Catalyzed Alder-Ene!

Trost, B. M.; Toste, F. D. Tetrahedron Lett. 1999, 40, 7739.!Trost et al J. Am. Chem. Soc. 2002, 124, 10396.!

RuCp(MeCN)3PF6 (10 mol%)

DMF, 84%

MeO2C

7 Ph

NHBoc

MeO2CPh

NHBoc

7

!" Selectivity for the branched diene can be high depending on substrate!

!" Selectivity for the branched diene can be high depending on substrate!

OTroc

RuCp(MeCN)3PF6 (5 mol%)

Actone, 85%

OTBS

Me

MeO

OTroc

Callipeltoside ATBSO

OMe

Me 22 longest linear46 overall steps

The Catalytic Cycle!

Trost et al J. Am. Chem. Soc. 2002, 124, 10396.!

RuI

NNN

TBSO

OMe

Me

OTroc

RuI

OTroc

TBSO

MeO

Me

S

RuIII OTroc

TBSO

OMe

Me

H

RuIII

TBSO

OMe

Me

OTroc

H

S

OTBS

Me

MeO

OTroc

H

S

The Catalytic Cycle!

Trost et al J. Am. Chem. Soc. 2002, 124, 10396.!

RuI

NNN

TBSO

OMe

Me

OTroc

RuI

OTroc

TBSO

MeO

Me

S

RuIII OTroc

TBSO

OMe

Me

H

RuIII

TBSO

OMe

Me

OTroc

H

S

OTBS

Me

MeO

OTroc

H

S

Intermolecular Co-Catalyzed Alder-Ene!

Hilt, G.; Treutwein, J. Angew. Chem. Int. Ed. 2007, 46, 8500.!

Etn-Pr

Ph

89%, 8:1 E/Z

MeSiMe3

EtO2C

99%, 99:1 E/Z

Me

EtO2C

95%, 8:1 E/Z

OMe

OMe

n-Pr

99%, 99:1 E/Z

OMe

MeO

EtOTMS

Ph

95%, E only

Et

Ph

80%, 4:1 E/Z

B(pin)

Co(dppp)Br2 (10 mol%)R2 R2

R1

R3 Zn, ZnI2 (20 mol%), CH2Cl2

R1

R3

Intermolecular Co-Catalyzed Alder-Ene!

Hilt, G.; Treutwein, J. Angew. Chem. Int. Ed. 2007, 46, 8500.!

Etn-Pr

Ph

89%, 8:1 E/Z

MeSiMe3

EtO2C

99%, 99:1 E/Z

Me

EtO2C

95%, 8:1 E/Z

OMe

OMe

n-Pr

99%, 99:1 E/Z

OMe

MeO

EtOTMS

Ph

95%, E only

Et

Ph

80%, 4:1 E/Z

B(pin)

Co(dppp)Br2 (10 mol%)R2 R2

R1

R3 Zn, ZnI2 (20 mol%), CH2Cl2

R1

R3

Other Ene Reactions!

!" The Carbonyl-ene!

Okachi, T.; Onaka, M. J. Am. Chem. Soc. 2004, 126, 2306.!

!" The Imino-ene!

Nakagawa et al. Org. Lett., 2000, 2, 159.!

Ph

Me O

HH

NaY zeolite, cyclohexane

Ph OH20 °C, 94%

Ph

Me NTol

PhH

Yb(OTf)3, TMSCl (5 mol% ea)

Ph NHTolCH2Cl2, rt, 94%

Ph

Other Ene Reactions!

!" The Acetal-ene!

Ghosez et al., Synthesis, 2004, 1375.!

!" The Arynyl-ene!

Ph OMe

OMe FeCl3, CH2Cl2, rt, 95%

Ph

OMe

SiMe3

KF, 18 crown 6

n-Burt, 69%

• n-PrOTf

n-PrHSiMe3

OTf

F-