May 022007

Post on 05-Apr-2018

217 views 0 download

Transcript of May 022007

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 1/98

Secondary Metabolites:

Biochemistry and Role in

Plants

Introduction

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 2/98

Secondary Metabolites are Derived from

Primary Metabolites

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 3/98

PrimaryPrimary--Secondary metabolites boundary ??Secondary metabolites boundary ??

GA

biosynthesisResin

component

Essential amino

acid Alkaloid

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 4/98

Main Groups of Secondary MetabolitesMain Groups of Secondary Metabolites

in Plantsin Plants

29,000 terpenes29,000 terpenes-- derived from the C5derived from the C5

precursor isopentenyl diphosphate (IPP)precursor isopentenyl diphosphate (IPP)

12,000 alkaloids12,000 alkaloids-- derived from amino acidsderived from amino acids

8,000 phenolics8,000 phenolics-- shikimate pathway orshikimate pathway or

malonate/acetate pathwaymalonate/acetate pathway

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 5/98

 Main Secondary metabolites Main Secondary metabolites

Nitrogen containing:- Alkaloids (12,000)

- Non protein amino acids (600)- Amines (100)

- Cyanogenic glycosides (100)- Glucosinolates (100)

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 6/98

 Main Secondary metabolites Main Secondary metabolites

Without nitrogen:

- Terpenoids (29,000):mono- 1000

sesquiterpene- 3000

diterpenes-1000triterpenes, steroids, saponines- 4,000

- Phenolics (8,000):

Flavonoids- 2000

Polyacetylens-1000

Polyketides- 750

Phenylpropanoids- 500

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 7/98

Compartmentation of SMs biosynthesisCompartmentation of SMs biosynthesis

Mostly in the Cytosol: hydrophilic compounds

Chloroplasts: alkaloids (caffeine) and terpenoids

(monoterpenes)

Mitochondria: some amines, alkaloids

Vesicles: alkaloids (protoberberines)

Endoplamic reticulum: hydroxylaton steps, lipophilic

compounds

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 8/98

SMs sequestrationSMs sequestration

- Water soluble compounds are usually

stored in the vacuole

- Lipophilic substances are sequestered

in resin ducts, laticifers, glandular hairs,

trichomes, in the cuticle, on the cuticle

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 9/98

SMs sequestration in to VacuolesSMs sequestration in to Vacuoles

Water soluble

compounds-alkaloids, NPAAs,

cyanogenic glucosides,

glucosinolates,saponines,

anthocyanines,

flavonoids,

cardenolides

ATP-

dependant

transporter

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 10/98

SMs sequestration in to VacuolesSMs sequestration in to Vacuoles--

 Anthocyanin example Anthocyanin example

- Anthocyanines- blue-red flavonoid pigments

- They are stabilized in the vacuole

- Oxidized in the cytosol

- The sequestration is a detoxification process

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 11/98

SMs sequestration in to VacuolesSMs sequestration in to Vacuoles--

 Anthocyanin example Anthocyanin example-- Bz2 mutant  Bz2 mutant 

- When the BRONZE2 gene is not active,anthocyanines accumulate in the cytosol and a tan

bronze phenotype of tissue is obtained

- BRONZE2 is a Glutathione-S-transferase

- Glutathionation of anthocyanines is a pre-requisite

for the targeting to the vacuole through a GST-x-

pump in the tonoplast membrane

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 12/98

SMs sequestration in VacuolesSMs sequestration in Vacuoles-- Anthocyanin Anthocyanin

exampleexample-- bz2bz2 & the an9 mutant & the an9 mutant 

bz2 an9

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 13/98

SMs sequestration to a location with a solid SMs sequestration to a location with a solid 

barrier and not with a biomembranebarrier and not with a biomembrane(interfered by lipophilic SMs)(interfered by lipophilic SMs)

Thyme-

glandular

trichomes

Mint-

glandular

trichomes

Lemon

leaf-

secretorycavity

Pine- resin

duct

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 14/98

Storage in LATICIFERS

- Latex is a sap mixtureof compounds stored in

special structures called

LATICIFERS

- Rubber was isolated

from it in the past

- The composition is

typically water,

terpenes, sugars,enzymes, etc.

- Often latex has amilky appearance

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 15/98

 Long Distance Transport of SMs

 In Xylem, Phloem or Apoplastic transport 

Long-distance phloem transport of glucosinolates Chen et al., 2001

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 16/98

 Long-distance phloem transport of glucosinolates

Chen et al., 2001

- Intact Glucosinolates are transported

- Selection of a specific glucosinolate to be loaded intothe phloem

- Presence of glucosinolates in the phloem providemeans of defense against insects

- Export of glucosinolates from fully expanded leaves

and senescent parts

- Export to sink tissues, seeds, flowers

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 17/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 18/98

Function of Secondary Metabolites

Often arguments that SMs are waste products but this cannot

explain:- production of SMs in young tissues

- plants are autotrophs and waste products are typicaland needed for heterotrophic animals that cannot

degrade their food completely for energy production

- many SMs could be metabolized further (SMs that

contain nitrogen stored in seeds and metabolized during

germination)

- tight spatial and temporal regulation of SMs

biosynthesis

- proven biological activity

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 19/98

Function of Secondary Metabolites -

 DEFENSE - ATTRACTION - PROTECTION (uv)

- Most animals can move-run away and possesan immune system

- Plants are attacked by herbivores, microbes,

(bacteria and fungi) and by other plants

competing for light, space and nutrients

- Abiotic stresses such as radiation

F i f S d M b li

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 20/98

Function of Secondary Metabolites:

Defense

Herbivores (insects, vertebrates)Repellence,

deterrence,

toxicity 

Microbes (bacteria,

fungi, viruses)

Growth inhibition

and toxicity 

 Attraction

Plant SMs

- mixtures

- variation in time,space & dev. stage

- pollinating insects

- seed dispersing animals

- root nodule bacteria

- induced volatiles attractpredatory organisms

(tritrophic interactions)

competing plants (inhibition of 

germination and seedlings growth)

UV-protection

M. Wink, Annual Plant Review, 1999

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 21/98

P d i f SM f d f i h bi

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 22/98

Production of SMs for defense against herbivores

and pathogens is not necessarily constitutive

- Wounding and infection trigger INDUCED accumulation of SMs

herbivore

inhibition

Secondary metabolism

activation of prefabricated defense chemicals

PLANT

 wounding and infection increase of existing defense compounds

induction of de novo synthesis of defense

compounds (phytoalexins)

microbe inhibition

M. Wink, Annual Plant Review, 1999

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 23/98

Function of Secondary Metabolites

- Wounding can lead to release of a pre-fabricated

compound from a compartment

- The mix with an enzyme (often an hydrolaze)

will result in production of an active form of the

chemical

- Example: myrosinase-glucosinolates

Th " d il b b" A bi

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 24/98

The "mustard oil bomb"-- A binary

Glucosinolate-Myrosinase chemical defensesystem

Glucosinolates breakdown products

1- isothiocyanates

2- nitriles and elemental sulfur

3- thiocyanates4- oxazolidine--thiones

5- epithionitriles

Grubb and Abel, TIPS, 2006 

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 25/98

Targets for SMs in animal

systems

- Nervous system (perception,

processing, signal transduction

- Development- Muscles and motility

- Digestion- Respiration

- Reproduction and fecundity

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 26/98

Co-evolution in plant SMs - natural enemy

- The SM defense system works in general but not always

- Some herbivores and microorganisms have evolved thathave overcome the defense barrier (like viruses, bacteria or

parasites that bypass the human immune system)

- These organisms developed different strategies of 

adaptations to the SMs

- They can either tolerate them or even use them for their

diet

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 27/98

 Adaptations of specialist herbivores & pathogens

Herbivores:

- Avoidance of toxic plants, except host plant

- Cutting laticfers and resin ducts filled with SMs

- Non-resorption or fast intestinal food passage

- Resorption followed by detoxification and elimination

(urine and others)- Hydroxylation

- Conjugation

- Elimination

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 28/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 29/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 30/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 31/98

Co-evolution in plant SMs - natural enemy

- Canavanine is toxic due to its incorporation

into proteins that rise to functionally aberrantpolypeptides

- The tRNA- Arginine in insects uses also

Canavanine

- The insect mutated its tRNA and will not

incorporate canavanine instead of Arginine

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 32/98

 Adaptations of specialist herbivores & pathogens

The process of co-evolution between plants and

their natural enemies is believed to have generatedmuch of the earth's biological diversity

This includes chemical diversity!!

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 33/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 34/98

SMs in Arabidopsis

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 35/98

Expression pattern of a Terpene Synthase in

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 36/98

Expression pattern of a Terpene Synthase in

Arabidopsis

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 37/98

The Terpenoids orThe Terpenoids or

IsoprenoidsIsoprenoids

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 38/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 39/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 40/98

T id d C i iT id d C i i

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 41/98

Terpenoids and CommunicationTerpenoids and Communication

Below groundattraction: orientation

cues (non-volatile)

Below groundprotection: anti-

microbial, antifeedant(non-volatile)

Above groundattraction: fragrance

(volatile)

Above groundprotection:

repellents,antifeedants,

predator attraction(volatile/non-volatile)

Precursors of Terpenoids

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 42/98

Precursors of Terpenoids

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 43/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 44/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 45/98

MonoterpenesMonoterpenes(C(C1010))

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 46/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 47/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 48/98

TriterpenoidsTriterpenoids

(C(C3030))

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 49/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 50/98

Biosynthesis in two main compartmentsBiosynthesis in two main compartments

Mevalonate pathwayMevalonate pathway leading to IPP inleading to IPP inthe cytosolthe cytosol

TheThe MEP pathwayMEP pathway leading to IPP in theleading to IPP in the

plastidsplastids

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 51/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 52/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 53/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 54/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 55/98

Biosynthesis of PrecursorsBiosynthesis of Precursors

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 56/98

Biosynthesis of Precursorsy

(prenyltransferases)(prenyltransferases)

Cytosol Plastid

OPP OPP

DMAPPIPP

OPP OPP+

IPP DMAPP

2 x

+

FDP - synthase GDP - synthase

OPP

OPP

Farnesyl diphosphate Geranyl diphosphate

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 57/98

Terpene CyclasesTerpene Cyclases

OneOne enzymeenzyme……....OneOnesubstratesubstrate……....MultipleMultiple productsproducts

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 58/98

TerpeneTerpeneCyclasesCyclases

(Mono)(Mono)

TerpeneTerpene

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 59/98

TerpeneTerpene

CyclasesCyclases(Sesqui(Sesqui--))

TerpeneTerpene

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 60/98

TerpeneTerpene

CyclasesCyclases(Diterpene)(Diterpene)

OH

O

HMONOTERPENOIDS SESQUITERPENOIDSOH

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 61/98

isopentenyl diphosphate(IDP)

dimethylallyl diphosphate(DMAPP)

GDP synthase

geranyl diphosphate(GDP)

monoterpene synthases +/-modifying enzymes

O

O

O

H

O

farnesyl diphosphate(FDP)

squalene-2,3-epoxide

DITERPENOIDS TRITERPENOIDS

O

NH

O

OH

O

OBzH

OAc

AcO OH

O

OH

O

PPO

OPP

OPP

geranylgeranyl diphosphate(GGDP)

O

OO

O

O

H

H

H

O

HO

OH

CO2H

HOOH

CO2HHO

paclitaxel

glycyrrhizin

(E,E )-α-farneseneartemisininlinalool α-pinene perilla alcohol

OAc

OOH

O

HO

H

OH

H

OH

cucurbitacin C

CHO

CHO

polygodial

FDP synthase

GGDP synthase

squalene synthase

squalene epoxidaseOPP OPP

diterpene synthases +/-modifying enzymes

sesquiterpene synthases +/-modifying enzymes

triterpene synthases +/-modifying enzymes

Strawberries  Anti-malarial drug 

Myzus persicae Leaf of cucumber  

 Modification of Monoterpene Modification of Monoterpene

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 62/98

StructuresStructures

OPP

OPPOPP

OH O O

O

O

Isopentenyl diphosphate Dimethyl allyl diphosphate

(-) limoneneGeranyl diphosphate (-) trans - Isopiperitenol (-) Isopiperitenone(+)-cis -Isopulegone

(-)-Limonenecyclase

Limonene 3-hydroxylase dehydrogenase reductase

isomerase

GDP-synthase

isomerase

O

reductase reductase

OH OH

reductase

+ (+)-pulegone

(-)- Menthol (+)-neomenthol (-)- menthone (+)-isomenthone

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 63/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 64/98

Most secondary metabolites in Basil are

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 65/98

y

produced in the Peltate Glands

Peltate Glands

Peltate Glands Isolated From Sweet Basil

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 66/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 67/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 68/98

MetabolicMetabolicEngineering ofEngineering of

TerpenoidTerpenoidBiosynthesisBiosynthesis

OH

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 69/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 70/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 71/98

S S - - Linalool Formation in Leaves of  Linalool Formation in Leaves of  

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 72/98

 Arabidopsis  Arabidopsis 

23 24 25

0

100

0

100

0

100

Time, min

   R

  e   l  a   t   i  v  e   d  e   t  e  c   t  o  r

  r  e  s  p  o  n  s  e

S-Linalool

reference

 R-Linalool

reference

TransgenicArabidopsis

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 73/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 74/98

 Further Modification Further Modification

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 75/98

The sum of glycosylated components was in someof the transgenic lines up to 40 to 60-fold higher

than the sum of the corresponding free alcohols

Conc en

tration(

mgkg

-1-FW)

0

20

40

60

80

100

120

140

160

   N  t -  1_   n

  o

   N  t -  2_   n

  o

   T  r  2  6

 -  3  6_   n  o

   T  r  2  6

 -  3  0_   n  o

   T  r  2  6

 -  4  1_ 

  n  o

   T  r  9 -  1  5_   n  o

   T  r  9 -  1  2_   n  o

   T  r  9 -  2  1

_  s  m

   T  r  9 -  6_  s  m

   T  r  2  6

 -  2  9_ 

 s  m

   T  r  9 -  7_  s  m

   T  r  2  6

 -  3  2_ 

 s  m

   T  r  2  6

 -  2  8_ 

 s  m

Sum - glycosidically bound

Sum - free

 Further Modification Further ModificationOH

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 76/98

OH

OH

OH

OH

OH

OH

S-Linalool

E-8-Hydroxylinalool Z-8-Hydroxylinalool

E-8-Hydroxy-6,7-dihydrolinalool

GlycosideGlycoside

Glycoside

1. Produced to the highestlevels in transgenic lines

2. The only component

detected in leaves of wild-type plants

3. Endogenous enzymes

already active and canutilize efficiently the newlyintroduced linalool

E-8-Hydroxylinalool and its glycoside:

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 77/98

OH

glycoside

 assumed glycosylation

 site in potato further  further 

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 78/98

OH

OH

OH

OH

OH

OH

S-linalool

E-8-hydroxy-linalool Z-8-hydroxy-linalool

E-8-hydroxy-6,7-dihydrolinalool

glycosideglycoside

glycoside

glycoside

assumed glycosylation

site in Arabidopsis

 assumed glycosylation

 site in potato

assumed glycosylation

site in Arabidopsis

 assumed glycosylation

 site in potato

modification modification in transgenic in transgenic 

 potato plants  potato plants 

Conclusions 

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 79/98

• In most cases the introduced metabolite could beglycosylated and/or hydroxylated

• Glycosylation could be highly efficient

• Derivatisation will be different between plant species

and it will depend on the genetic make-up (i.e. activity

of the endogenous enzyme)• If the target metabolite or its derivative is already

produced by the plant one should expect amplification

in production but also formation of “new” metabolites

(possibly metabolites that could not be detected earlier

due to sensitivity of instruments)

 Engineering Sesquiterpenes in Arabidopsis

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 80/98

 Introducing the CiGASlo Gene to Introducing the CiGASlo Gene to

 Arabidopsis Arabidopsis

Enh 35S TCiGASlo 

Wild-type Arabidopsis leaves

do not produce Germacrene A

Cytosolic production of aGermacrene A synthase from

Chicory

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 81/98

Unexpected: Sesquiterpene Production withUnexpected: Sesquiterpene Production with

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 82/98

 Plastidic Targeting of FaNES1 Plastidic Targeting of FaNES1

800

9

00

1000

1100

1200

13

00

1400

0

10

000

20000

ime

nero

lido

l

8

00

9

00

10 00 11 00 12 00 13 00 14 000

10000

20

000

ime

     A     b    u    n     d    a    n    c    e

ransgenic r a b i d o p s i s ild type r a b i d o p s i s

     A     b    u    n     d    a    n    c    e

linaloolLinalool

Nerolidol

 Nerolidol is Produced at Low Level Also in Potato Nerolidol is Produced at Low Level Also in Potato

10034.67

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 83/98

33.8 33.9 34.0 34.1 34.2 34.3 34.4 34.5 34.6 34.7 34.8 34.9 35.0 35.1

Time (min)

20

40

60

80

100

20

40

60

80

100

20

40

60

80

100

   R  e   l  a   t   i  v  e   A   b  u  n   d  a  n

  c  e

20

40

60

8034.10

34.16 34.39 34.5033.78 34.3434.00 34.7633.81 34.80 35.0434.92 35.07

34.68

34.1134.50

34.3934.2134.0033.77 33.92 34.7834.30 34.82 35.00 35.08

34.65

34.10

34.50

33.80 34.18 34.2633.91 33.95 34.38 34.78 34.87 35.0734.9434.66

34.5134.4934.11

34.0333.77 34.2133.99 34.3734.31 34.75 35.1434.83 34.95 35.00

Nerolidol Wild-Type

Transgenic #1

Transgenic #2

Transgenic #3

 Availability of Precursor Pools? Availability of Precursor Pools?

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 84/98

Monoterpenes

GPP GGPP

IPP DMAPP

Emission /storage

CYTOSOL

Sesquiterpenes

FPP

GPP

IPP DMAPP

PLASTID

Hydroxylated monoterpenes

MITOCHONDRIA

FPP

 Engineering Sesquiterpenes in Arabidopsis

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 85/98

Introducing the FaNES1 fused to a MitochondrialIntroducing the FaNES1 fused to a Mitochondrial

targeting signaltargeting signal to Arabidopsisto Arabidopsis

Enh 35S TFaNES1

Production of terpenoids inMitochondria

Cox IV

Mitochondrial targeting,cytochrome c oxidase

 Engineering Sesquiterpenes in Arabidopsis

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 86/98

UndamagedWild-type

Transgenic Undamaged(nerolidol and DMNT)

Transgenic undamaged(only nerolidol)

Nerolidol

DMNT (C11 homoterpene)Nerolidol

C15 sesquiterpene C11 homoterpene

Conclusions 

E i i i d i i h

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 87/98

• Engineering sesquiterpene production in thecytosol compared to plastidic production of

monoterpenes seems more difficult

•Targeting different cell compartments for

engineering terpenoids might be a valuable tool

• Further modification of introduced terpenoid

might be different in each cell compartment

The Cost of Terpenoid Production in Plants

G h d i i h

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 88/98

Growth retardation withconstitutive over-expression of 

FaNES1 in Arabidopsis

The Cost of Terpenoid Production in

Pl

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 89/98

Plants

Constitutive over-expression of FaNES1 in potato controlledby the Rubisco promoter

The Rubisco promoter is x 10 fold stronger than the 35Spromoter

Rubisco T

Plastid targeting

FaNES1

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 90/98

 Effect of Linalool Expression on Potato Effect of Linalool Expression on Potato

Ph tPh t

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 91/98

 Phenotype Phenotype

0

2

4

6

8

10

1214

1 2 3 4 5 6 7 8 9

K-con

K-R5.2K-R1.1 K-R1.7 K-R1.2 K-R1.4 K-R7.1 K-R3.4K-R1.3

Potato Plants Overexpressing FvPINS 

100 20.14

Wild

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 92/98

Time4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00

%

0

100

%

0

100

%

0

00

2.66

19.3418.51

20.7621.2022.4421.69 22.97

24.20

9.53

2.63

10.59

9.53

2.65

10.59

20.14

22.97 24.20

R-F 10

R-Z 31

Wild

Alpha-pinene Beta -pinene

R-Z 31

R-F 10

Concl sions

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 93/98

Conclusions 

•Engineering with a very strong, constitutivepromoter is deleterious to plants (toxicity or

altered precursor pool for other pathways)

•Use of specific and/or inducible promoters for

engineering terpenoids

Volatiles Produced by Trangenic plantsVolatiles Produced by Trangenic plants

 Influence Insect Behevior  Influence Insect Behevior 

Leaves detached

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 94/98

Leaves detachedfrom transgenic

Arabidopsis plantsexpressing thestrawberry

FaNES1 gene.

Linalool deters

aphids

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 95/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 96/98

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 97/98

ConclusionsConclusions

8/2/2019 May 022007

http://slidepdf.com/reader/full/may-022007 98/98

ConclusionsConclusions

-Terpenoids produced by engineered plantsinfluence insect behavior

-High levels of linalool production detersinsects (aphids and thrips) in different plant

species