L4 functions

Post on 11-May-2015

131 views 3 download

Transcript of L4 functions

Autumn Semester 2009 Programming and Data Structure 1

Functions

Courtsey: University of Pittsburgh-CSD-Khalifa

Autumn Semester 2009 Programming and Data Structure 2

Class Test I: Time and Venue

• Date: August 20, 2009• Time: 6:00 PM to 7:00 PM

– Students must occupy seat within 5:45 PM, and carry library card with them.

• Venue: VIKRAMSHILA COMPLEX / MAIN BUILDING

- Section 7 & 10 (AE-EC) :: AE, AG, AR, BT, CE, CH, CS , CY, EC Room V1– Section 8 & 10 (Rest) :: Room V2– Section 9 (AE-CS):: AE, AG, AR, BT, CE, CH, CS Room V3– Section 9 (Rest):: Room V4– Section 11:: F 116– Section 12:: F 142

Autumn Semester 2009 Programming and Data Structure 3

Functions: Why?

• Functions– Modularize a program– All variables declared inside functions are local

variables• Known only in function defined

– Parameters• Communicate information between functions• Local variables

• Benefits– Divide and conquer

• Manageable program development– Software reusability

• Use existing functions as building blocks for new programs

• Abstraction - hide internal details (library functions)– Avoids code repetition

Autumn Semester 2009 Programming and Data Structure 4

Functions: Why?

• Divide and conquer – Construct a program from smaller

pieces or components– Each piece more manageable than the

original program

Autumn Semester 2009 Programming and Data Structure 5

Program Modules in C

• Functions– Modules in C

– Programs written by combining user-defined functions with library functions

• C standard library has a wide variety of functions

• Makes programmer's job easier - avoid reinventing the wheel

Autumn Semester 2009 Programming and Data Structure 6

Program Modules in C

• Function calls– Invoking functions

• Provide function name and arguments (data)• Function performs operations or

manipulations• Function returns results

– Boss asks worker to complete task• Worker gets information, does task, returns

result• Information hiding: boss does not know

details

Autumn Semester 2009 Programming and Data Structure 7

Function: An Example#include <stdio.h>

int square(int x){ int y; y=x*x; return(y);}

void main() { int a,b,sum_sq;

printf(“Give a and b \n”); scanf(“%d%d”,&a,&b);

sum_sq=square(a)+square(b);

printf(“Sum of squares= %d \n”,sum_sq); }

Function definition

Name of function

parameter

Return data-type

Functions called

Parameters Passed

Autumn Semester 2009 Programming and Data Structure 8

Invoking a function call : An Example• #include <stdio.h>

• int square(int x)• {• int y;• • y=x*x;• return(y);• }

• void main()• {• int a,b,sum_sq;

• printf(“Give a and b \n”);• scanf(“%d%d”,&a,&b);

• sum_sq=square(a)+square(b);

• printf(“Sum of squares= %d \n”,sum_sq);• }

Assume value of a is 10

10a

x 10

*

y 100

returns

Autumn Semester 2009 Programming and Data Structure 9

Function Definitions

• Function definition format (continued)return-value-type function-name( parameter-list )

{ declarations and statements}

– Declarations and statements: function body (block)• Variables can be declared inside blocks (can be

nested)• Function can not be defined inside another function

– Returning control• If nothing returned

– return; – or, until reaches right brace

• If something returned – return expression;

Autumn Semester 2009 Programming and Data Structure 10

Variable Scope

• int A;• void main()

• { A = 1;• myProc();• printf ( "A =

%d\n", A);• }

• void myProc()• { int A = 2;• while( A==2 )• {• int A = 3;• printf ( "A =

%d\n", A);• break;• }• printf ( "A =

%d\n", A);• }• . . .

Printout:

--------------

A = 3

A = 2

A = 1

Autumn Semester 2009 Programming and Data Structure 11

Math Library Functions

• Math library functions – perform common mathematical calculations– #include <math.h>

• Format for calling functionsFunctionName (argument);

• If multiple arguments, use comma-separated list

– printf( "%5.2f", sqrt( 900.0 ) ); • Calls function sqrt, which returns the square root of its

argument

• All math functions return data type double

– Arguments may be constants, variables, or expressions

Autumn Semester 2009 Programming and Data Structure 12

Math Library Functions• double acos(double x) -- Compute arc cosine of x.

double asin(double x) -- Compute arc sine of x. double atan(double x) -- Compute arc tangent of x. double atan2(double y, double x) -- Compute arc tangent of y/x. double ceil(double x) -- Get smallest integral value that exceeds x. double cos(double x) -- Compute cosine of angle in radians. double cosh(double x) -- Compute the hyperbolic cosine of x. div_t div(int number, int denom) -- Divide one integer by another. double exp(double x -- Compute exponential of x double fabs (double x ) -- Compute absolute value of x. double floor(double x) -- Get largest integral value less than x. double fmod(double x, double y) -- Divide x by y with integral quotient and return remainder. double frexp(double x, int *expptr) -- Breaks down x into mantissa and exponent of no. labs(long n) -- Find absolute value of long integer n. double ldexp(double x, int exp) -- Reconstructs x out of mantissa and exponent of two. ldiv_t ldiv(long number, long denom) -- Divide one long integer by another. double log(double x) -- Compute log(x). double log10 (double x ) -- Compute log to the base 10 of x. double modf(double x, double *intptr) -- Breaks x into fractional and integer parts. double pow (double x, double y) -- Compute x raised to the power y. double sin(double x) -- Compute sine of angle in radians. double sinh(double x) - Compute the hyperbolic sine of x. double sqrt(double x) -- Compute the square root of x. void srand(unsigned seed) -- Set a new seed for the random number generator (rand). double tan(double x) -- Compute tangent of angle in radians. double tanh(double x) -- Compute the hyperbolic tangent of x.

http://www.cs.cf.ac.uk/Dave/C/node17.html#SECTION001710000000000000000

Autumn Semester 2009 Programming and Data Structure 13

Function Prototypes

• Function prototype

– Function name– Parameters - what the function takes in– Return type - data type function returns (default int)– Used to validate functions– Prototype only needed if function definition comes after

use in programint maximum( int, int, int );

• Takes in 3 ints

• Returns an int

• Promotion rules and conversions– Converting to lower types can lead to errors

Autumn Semester 2009 Programming and Data Structure 14

Header Files

• Header files– contain function prototypes for library functions– <stdlib.h> , <math.h> , etc– Load with #include <filename>

#include <math.h>

• Custom header files– Create file with functions – Save as filename.h– Load in other files with #include "filename.h"– Reuse functions

Autumn Semester 2009 Programming and Data Structure 15

/* Finding the maximum of three integers */

#include <stdio.h>

int maximum( int, int, int ); /* function prototype */

int main(){ int a, b, c;

printf( "Enter three integers: " ); scanf( "%d%d%d", &a, &b, &c ); printf( "Maximum is: %d\n", maximum( a, b, c ) );

return 0;}

/* Function maximum definition */int maximum( int x, int y, int z ){ int max = x;

if ( y > max ) max = y;

if ( z > max ) max = z;

return max;}

Autumn Semester 2009 Programming and Data Structure 16

Calling Functions: Call by Value and Call by Reference

• Used when invoking functions• Call by value

– Copy of argument passed to function– Changes in function do not affect original– Use when function does not need to modify argument

• Avoids accidental changes

• Call by reference – Passes original argument– Changes in function affect original– Only used with trusted functions

• For now, we focus on call by value

Autumn Semester 2009 Programming and Data Structure 17

An Example: Random Number Generation

• rand function– Prototype defined in <stdlib.h>– Returns "random" number between 0 and RAND_MAX (at

least 32767)i = rand();

– Pseudorandom• Preset sequence of "random" numbers• Same sequence for every function call

• Scaling– To get a random number between 1 and n1 + ( rand() % n )• rand % n returns a number between 0 and n-1• Add 1 to make random number between 1 and n1 + ( rand() % 6) // number between 1 and 6

Autumn Semester 2009 Programming and Data Structure 18

Random Number Generation: Contd.

• srand function– Prototype defined in <stdlib.h>– Takes an integer seed - jumps to location in

"random" sequence

srand( seed );

Autumn Semester 2009 Programming and Data Structure 19

1 /* A programming example

2 Randomizing die-rolling program */

3 #include <stdlib.h>

4 #include <stdio.h>

5

6 int main()

7 {

8 int i;

9 unsigned seed;

10

11 printf( "Enter seed: " );

12 scanf( "%u", &seed );

13 srand( seed );

14

15 for ( i = 1; i <= 10; i++ ) {

16 printf( "%10d ", 1 + ( rand() % 6 ) );

17

18 if ( i % 5 == 0 )

19 printf( "\n" );

20 }

21

22 return 0;

23 }

Algorithm1. Initialize seed

2. Input value for seed

2.1 Use srand to change random sequence

2.2 Define Loop

3. Generate and output random numbers

Autumn Semester 2009 Programming and Data Structure 20

Program Output

Enter seed: 867 2 4 6 1 6 1 1 3 6 2

 Enter seed: 67 6 1 4 6 2 1 6 1 6 4

Enter seed: 67 6 1 4 6 2 1 6 1 6 4

Autumn Semester 2009 Programming and Data Structure 21

Another Example: A Game of Chance

• Rules– Roll two dice

• 7 or 11 on first throw, player wins• 2, 3, or 12 on first throw, player loses• 4, 5, 6, 8, 9, 10 - value becomes player's "point"

– Player must roll his point before rolling 7 to win

Autumn Semester 2009 Programming and Data Structure 22

Programme Structure

• 1. rollDice prototype•

1.1 Initialize variables•

1.2 Seed srand

• 2. Define switch statement for win/loss/continue

• 2.1 Loop

Autumn Semester 2009 Programming and Data Structure 23

1 /* A Game of Chance2 Rolling Two Dice*/3 #include <stdio.h>4 #include <stdlib.h>5 #include <time.h>67 int rollDice( void );89 int main()10 {11 int gameStatus, sum, myPoint;1213 srand( time( NULL ) ); /* Randomizing seed by time(NULL) */14 sum = rollDice(); /* first roll of the dice */1516 switch ( sum ) {17 case 7: case 11: /* win on first roll */18 gameStatus = 1;19 break;20 case 2: case 3: case 12: /* lose on first roll */21 gameStatus = 2;22 break;23 default: /* remember point */24 gameStatus = 0;25 myPoint = sum;26 printf( "Point is %d\n", myPoint );27 break;28 }2930 while ( gameStatus == 0 ) { /* keep rolling */31 sum = rollDice();32

Autumn Semester 2009 Programming and Data Structure 24

2.2 Print win/loss

Program Output

33 if ( sum == myPoint ) /* win by making point */

34 gameStatus = 1;

35 else

36 if ( sum == 7 ) /* lose by rolling 7 */

37 gameStatus = 2;

38 }

39

40 if ( gameStatus == 1 )

41 printf( "Player wins\n" );

42 else

43 printf( "Player loses\n" );

44

45 return 0;

46 }

47

48 int rollDice( void )

49 {

50 int die1, die2, workSum;

51

52 die1 = 1 + ( rand() % 6 );

53 die2 = 1 + ( rand() % 6 );

54 workSum = die1 + die2;

55 printf( "Player rolled %d + %d = %d\n", die1, die2, workSum );

56 return workSum;

57 }

Autumn Semester 2009 Programming and Data Structure 25

Program Output

Player rolled 6 + 6 = 12Player loses

Player rolled 4 + 6 = 10Point is 10Player rolled 2 + 4 = 6Player rolled 6 + 5 = 11Player rolled 3 + 3 = 6Player rolled 6 + 4 = 10Player wins

Player rolled 1 + 3 = 4Point is 4Player rolled 1 + 4 = 5Player rolled 5 + 4 = 9Player rolled 4 + 6 = 10Player rolled 6 + 3 = 9Player rolled 1 + 2 = 3Player rolled 5 + 2 = 7Player loses

Player rolled 6 + 5 = 11Player wins

Autumn Semester 2009 Programming and Data Structure 26

Recursion

• A process by which a function calls itself repeatedly.– Either directly.

• X calls X.

– Or cyclically in a chain.• X calls Y, and Y calls X.

• Used for repetitive computations in which each action is stated in terms of a previous result.– fact(n) = n * fact (n-1)

Autumn Semester 2009 Programming and Data Structure 27

Contd.

• For a problem to be written in recursive form, two conditions are to be satisfied:– It should be possible to express the problem in

recursive form.– The problem statement must include a

stopping conditionfact(n) = 1, if n = 0

= n * fact(n-1), if n > 0

Autumn Semester 2009 Programming and Data Structure 28

Example 1 :: Factorial

long int fact (n)int n;{ if (n = = 0) return (1); else return (n * fact(n-1));}

Autumn Semester 2009 Programming and Data Structure 29

Mechanism of Execution

• When a recursive program is executed, the recursive function calls are not executed immediately.– They are kept aside (on a stack) until the

stopping condition is encountered.– The function calls are then executed in reverse

order.

Autumn Semester 2009 Programming and Data Structure 30

Example :: Calculating fact(4)

– First, the function calls will be processed:fact(4) = 4 * fact(3)

fact(3) = 3 * fact(2)

fact(2) = 2 * fact(1)

fact(1) = 1 * fact(0)

– The actual values return in the reverse order:fact(0) = 1

fact(1) = 1 * 1 = 1

fact(2) = 2 * 1 = 2

fact(3) = 3 * 2 = 6

fact(4) = 4 * 6 = 24

Autumn Semester 2009 Programming and Data Structure 31

Factorials: Contd.

• Example: factorials– 5! = 5 * 4 * 3 * 2 * 1

– Notice that• 5! = 5 * 4!• 4! = 4 * 3! ...

– Can compute factorials recursively – Solve base case (1! = 0! = 1) then plug in

• 2! = 2 * 1! = 2 * 1 = 2;• 3! = 3 * 2! = 3 * 2 = 6;

Autumn Semester 2009 Programming and Data Structure 32

Recursive evaluation of 5!.

Autumn Semester 2009 Programming and Data Structure 33

1 /* An example */

2 /* Recursive factorial function */

3 #include <stdio.h>

4

5 long factorial( long number ); /* function prototype */

6

7 /* function main begins program execution */

8 int main( void )

9 {

10 int i; /* counter */

11

12 /* loop 11 times; during each iteration, calculate

13 factorial( i ) and display result */

14 for ( i = 0; i <= 10; i++ ) {

15 printf( "%2d! = %ld\n", i, factorial( i ) );

16 } /* end for */

17

18 return 0; /* indicates successful termination */

19

20 } /* end main */

21

22 /* recursive definition of function factorial */

23 long factorial( long number )

24 {

25 /* base case */

26 if ( number <= 1 ) {

27 return 1;

28 } /* end if */

29 else { /* recursive step */

30 return ( number * factorial( number - 1 ) );

31 } /* end else */

32

33 } /* end function factorial */ 0! = 1 1! = 1 2! = 2 3! = 6 4! = 24 5! = 120 6! = 720 7! = 5040 8! = 40320 9! = 362880 10! = 3628800

TerminatingCriterion

Autumn Semester 2009 Programming and Data Structure 34

Another Example :: Fibonacci number

• Fibonacci number f(n) can be defined as: f(0) = 0

f(1) = 1

f(n) = f(n-1) + f(n-2), if n > 1– The successive Fibonacci numbers are:

0, 1, 1, 2, 3, 5, 8, 13, 21, …..

• Function definition:int f (int n){ if (n < 2) return (n); else return (f(n-1) + f(n-2));}

Autumn Semester 2009 Programming and Data Structure 35

Tracing Execution

• How many times the function is called when evaluating f(4) ?

• Inefficiency:– Same thing is

computed several times.

f(4)

f(3)

f(0)f(1) f(1)f(2)

f(2)

f(1) f(0)

9 times

Autumn Semester 2009 Programming and Data Structure 36

Example Codes: fibonacci()

– Code for the fibonacci functionlong fibonacci( long n ){if (n == 0 || n == 1) // base case

return n;else

return fibonacci( n - 1) + fibonacci( n – 2 );

}

Autumn Semester 2009 Programming and Data Structure 37

1 /* Another Example:

2 Recursive fibonacci function */

3 #include <stdio.h>

4

5 long fibonacci( long n ); /* function prototype */

6

7 /* function main begins program execution */

8 int main( void )

9 {

10 long result; /* fibonacci value */

11 long number; /* number input by user */

12

13 /* obtain integer from user */

14 printf( "Enter an integer: " );

15 scanf( "%ld", &number );

16

17 /* calculate fibonacci value for number input by user */

18 result = fibonacci( number );

19

20 /* display result */

21 printf( "Fibonacci( %ld ) = %ld\n", number, result );

22

23 return 0; /* indicates successful termination */

24

25 } /* end main */

26

27 /* Recursive definition of function fibonacci */

28 long fibonacci( long n )

29 {

30 /* base case */

31 if ( n == 0 || n == 1 ) {

32 return n;

33 } /* end if */

34 else { /* recursive step */

35 return fibonacci( n - 1 ) + fibonacci( n - 2 );

36 } /* end else */

37

38 } /* end function fibonacci */

Enter an integer: 0Fibonacci( 0 ) = 0

Enter an integer: 1Fibonacci( 1 ) = 1

Enter an integer: 2Fibonacci( 2 ) = 1 (continued on next slide… )

Autumn Semester 2009 Programming and Data Structure 38

(continued from previous slide…) Enter an integer: 3 Fibonacci( 3 ) = 2 Enter an integer: 4 Fibonacci( 4 ) = 3 Enter an integer: 5 Fibonacci( 5 ) = 5 Enter an integer: 6 Fibonacci( 6 ) = 8 )

Autumn Semester 2009 Programming and Data Structure 39

Set of recursive calls for fibonacci(3).

Autumn Semester 2009 Programming and Data Structure 40

Performance Tip

• Avoid Fibonacci-style recursive programs which result in an exponential “explosion” of calls.

Autumn Semester 2009 Programming and Data Structure 41

Recursion and activation records: an example

#include <stdio.h>main(){ int a, b; b = 7; a = xyz (b); printf ("a=%d, b=%d \n", a, b);}

int xyz (int n){ if (n <= 0) return (2); else { n = n - 2; return (xyz(n-1) * xyz(n-2) + 5); }}

What is the output?How many times xyz()Called?

Autumn Semester 2009 Programming and Data Structure 42

XYZ(7)

XYZ(4) XYZ(3)

XYZ(1) XYZ(0) XYZ(0) XYZ(-1)

XYZ(-2) XYZ(-3)

2 2

9 2 2 2

239

23*9+5=212

if (n <= 0) return (2); else { n = n - 2; return (xyz(n-1) * xyz(n-2) + 5);}

Autumn Semester 2009 Programming and Data Structure 43

Trace of the recursive calls

Autumn Semester 2009 Programming and Data Structure 44

RA .. main

-

b = 7

RA .. main

-

b = 7

RA .. xyz

-

n = 4

RA .. xyz

-

n = 1

RA .. main

-

b = 7

RA .. xyz

-

n = 4

RA .. xyz

2

n = -2

RA .. xyz

-

n = 1

RA .. main

-

b = 7

RA .. xyz

-

n = 4

RA .. xyz

2

n = -3

RA .. xyz

-

n = 1

RA .. main

-

b = 7

RA .. xyz

-

n = 4RA .. xyz

9

n = 1

RA .. main

-

b = 7

RA .. xyz

-

n = 4

RA .. main

-

b = 7

RA .. xyz

23

n = 4

RA .. main

-

b = 7

RA .. xyz

-

n = 3

Autumn Semester 2009 Programming and Data Structure 45

What is the value of a and b?

How many times the recursive function called?

(i) a=212, b=7

(i) xyz( ) called 9 times

Autumn Semester 2009 Programming and Data Structure 46

Recursion vs. Iteration

• Repetition– Iteration: explicit loop– Recursion: repeated function calls

• Termination– Iteration: loop condition fails– Recursion: base case recognized

• Both can have infinite loops• Balance

– Choice between performance (iteration) and good software engineering (recursion)

Autumn Semester 2009 Programming and Data Structure 48

Performance Tip

• Avoid using recursion in performance situations. Recursive calls take time and consume additional memory.