Investigation of Defects from DFT-II 15 April 2010;...

Post on 10-Aug-2020

0 views 0 download

Transcript of Investigation of Defects from DFT-II 15 April 2010;...

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

1

Investigation of Defects from DFT-II

15 April 2010; Ø186

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

2Convergence aspects for defect calculations

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

3Electronic Effect – I(Neutral GaP: P-vacancy)

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

4

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

5

Relative CPU time consumption

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

6

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

7

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

8

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

9

Example: First ionization energy of an atom

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

10

Defect Formation Energy

-

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

11

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

12Defect Formation Energy: H in GaN

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

13Point defects in GaN

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

14Defects transition level calculations: Semiconductor surfaces

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

15

Defects charge transition levels: InP(110)

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

16Charge-transition levels: The (+/0) level of VP at InP(110)

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

17Defects transition level calculations: Improved by many body effects

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

18GW calculations better for defects transition level prediction

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

19Defect Concentrations

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

20

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

21

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

22Positrons: To probe vacancies in semiconductors

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

23Vacancy clusters: Electron-irradiated Ge

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

24Vacancy clusters: Electron-irradiated Si

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

25Positron lifetime: Probe to Vacancy clusters

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

26Vacancy clusters in Si: Theoretical Study

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

27Vacancy clusters: Voids in GaAs

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

28Defects in ZnO

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

29

VO

Oxygen vacancy in ZnO

Neutral vacancy (negative charge) attracts Zn atomsSurrounding Zn atoms are relaxed towards the vacancy site

Positively charged vacancy repels Zn atomsSurrounding Zn atoms are relaxed outwards (away from) the vacancy site

VO+

Charge present at the vacancy site affects neighboring atoms !!

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

30

Pure ZnO Neutral VO

Electron localization function (ELF) Analysis shows charge at the vacancy site

Charged VO+

0.0

0.25

0.50

0.75

1.0

Charged VO2+

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

31

VZn VZn‐

Zinc vacancy in ZnO

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

32Positron lifetime calculations

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

33Positron lifetimes in ZnO (Theory)

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

34Positron lifetimes in ZnO :new ideas about defects

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

35Positron lifetimes in ZnO:with H

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

36Defects in ZnO: with H

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

37Defects in ZnO: with H …

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

38Hydrogen in ZnO surfaces?

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

39Vibrational spectroscopy H/ZnO(10-10): HREELS

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

40Hydrogen on Zn(10-10): Electronic structure

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

41

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

42Water/ZnO(10-10)

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

43Neutral oxygen vacancy in α-quartz

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

44Bandgap shrinkage by C-doping in GaAs

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

45Why bandgap Shrinkage?

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

46Burstein-Moss effect-An opposite effect to Bangapshrinkage

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

47Deep level dopants in InP & GaAs

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

48Dopants and Defect in Semiconductors

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

49Structure of Defects and Dopants

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

50Diffusion of silicon interstitials

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

51From compact to extended defect structures

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

52Accuracy of Defect Energies

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

53Accuracy of Diffusion Barriers

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

54

Electronic Transition Levels of Dopants

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

55Electronic Transition Levels of Dopants

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

56

Doping in c-SiP-typeBoronacceptors

-1 h+

EN

N-typePhosphorousdonors

+1 e -

E

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

57

Hydrogen in Silicon Systems

• Compensates both p-type and n-type doping• Passivates dangling bonds at surfaces and interfaces• Hydrogen related charge traps in MOSFETs• Participates in metastable defect formation in poly- and

amorphous silicon • Forms very mobile H2 molecules in bulk Si

• Forms large platelets used for cleaving silicon

For more details see reference below and references therein:C. Van de Walle and B. Tuttle, “Theory of hydrogen in silicon devices”IEEE Transactions on Electron Devices, vol. 47 pg. 1779 (2000)

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

58

Concentration of defects: H in Si

• Etot = total energy for bulk cell with Nsi silicon atoms and NH hydrogen atoms.

• μΗ , μSi = the chemical potential for hydrogen, Si • The charge q and the Fermi energy (EF).

ZPFHHSiSitotform

formformformform

kTGsites

EqENNqEqE

PVTSEGeNC form

+−−−=

+−== −

μμ)()(

/

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

59

Acceptor and Donor levels for atomic hydrogen in crystalline silicon

• Donor level is the Fermi Energy when:

• Calculate Eform for H at its local minima for each charge state q = +1,0,-1

• Calculate valence band maximum to compare charge states

)()( 01 =+= = qq formform EE

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

60

Convergence: Basis size• Plane waves are a complete basis so crank up the G

vectors until convergence is reached.

00.020.040.060.08

0.10.120.140.16

10 15 20 25 30 35 40

DE ( eV )

[ ])()()( SictotBCtotPW EHEE E −−=Δ +

EPW [Ryd.]

ΔE [e

V]

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

61

Convergence: Supercell size

• Prevent defect-defect interactions. – Electronic localization of defect level as determined by

k-point integration– Steric relaxations: di-vancancy in silicon– Coulombic interaction of charged defects

For more details see reference below and references therein:1. C. Van de Walle and B. Tuttle, “Theory of hydrogen in silicon devices”IEEE Transactions on Electron Devices, vol. 47 pg. 1779 (2000) 2. http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

62

Convergence: k-point sampling

• Reciprocal space integration– For each supercell size, converge the number of

“special” k-points – Data for 8 atom supercell:

K points E per Si (eV) for c-Si

ΔΕ (eV) for H+

BC in c-Si2x2x2 5.8826 7.581

3x3x3 5.9549 7.514

4x4x4 5.9691 7.485

5x5x5 5.9705 7.484

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

63

Convergence data at Epw = 15 Ryd.

N atoms K points E per Si (eV) in c-Si

ΔΕ (eV) for H+

BC in c-Si8 5x5x5 5.9705 7.484

64 2x2x2 5.9693 7.311

64 3x3x3 5.9700 7.309

64 4x4x4 5.9711 7.308

216 2x2x2 5.9708 7.240

•N=64, Kpt=2x2x2 results converged to within 0.1 eV

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

64

Bandstructure of 64 atom supercell

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11

VBMCBM

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11

VBMDefectCBM

L Г X L Г X•Bulk bands retained even with defect in calculation

Bulk c-Si Bulk c-Si + H+BC

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

65

Results for H in c-Si

• H0 and H+1 at global minimum• H-1 at stationary point or saddle point

– Will lower its energy by moving to Td site

H-1

H+1

H0

EFermi

EForm

0.5 eV 1.0 eV

Eglda

For more info see: C. G. Van de Walle, “Hydrogen in crystalline semiconductors” Deep Centers I Semiconductors , Ed. by S. T. Pantelides, pg. 899 (1992).

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

66

Hydrogen in Silicon

E in eV E(0,-) E(+,0) E(+,-) U-corrExp. 0.51 0.92 0.72 -0.41LDA 0.46 1.07 0.77 -0.61

Solid = LDA, Dashed =LDA + rigid scissor shift

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

67

• H2 min. at T site • EB ~ 1.9 eV per H atom• 0.6 eV less than free space

• H2* along <111> direction• EB ~ 1.6 eV per H atom• H+ (BC) + H_(T)

H2 complexes in Silicon

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

68

• 5-fold Si defects are paramagnetic:• D center in a-Si & Pb center at Si-SiO2 interface

• EB ~ 2.45 eV per H for Si-H at Si-interstitials in c-Si• EB ~ 2.55 eV per H for Si-H at a 5-fold defect in a-Si

Si-H Bond Frustrated Bond

Passivation of a 5-fold Si defect

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

69

• Si dangling bonds paramagnetic• EB ~ 4.1 eV for H-SiH3

• EB ~ 3.6 eV for pre-existing isolated Sidb in c-Si• EB ~ 3.1 - 3.6 eV for pre-existing isolated Sidb in a-Si

Si 3sp3

H 1s

H passivation of dangling bonds

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

70

Hydrogen in SiO2

• H0 favors open void• EB ~ 0.1 eV• Very little experimental info

on charge states• Defect is paramagnetic

• H2 free to rotate• EB ~ 2.3 eV per H atom

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

71

Binding Energy per H (eV)

0.0 1.0 2.0 3.0 4.0

H0 (free)&SiO2

H in c-Si

H2 in c-Si

H2* in c-Si

(Si-H H-Si) in a-Si

H2 (free)&SiO2

H at pre-existing isolated silicon dangling bond (db)

H at pre-existing “frustrated” Si bond

H at pre-existing db with Si-H in a cluster e.g. a Si vacancy

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

72

Energy of H in a-SiEB (eV)

0.0

1.0

2.0

3.0

4.0

Clustered Si-H

H at frustrated bonds

Isolated Si-H bonds

HEa~1.5 eV

Ed~.3 eV

B. Tuttle and J. B. Adams, “Ab initio study of H in amorphous silicon” Phys. Rev. B, vol. 57 pg. 12859 (1998).

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

73

Si-SiO2 Interface

M. Staedele, B. R. Tuttle and K. Hess, 'Tunneling through unltrathin SiO2 gate oxide from microscopic models', J. Appl.Phys. {\bf 89}, 348 (2001).

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

74Energy of H at Si(111)Energy of H at Si(111)--SiOSiO2 2 interfaceinterface

EB (eV)0.0

1.0

2.0

3.0

4.0

Isolated Si-H bonds

H in SiEB~2.6 eV

H in SiO2

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

75Band offset and defect levelsBand offset and defect levels

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

76Vacancy Formation Energy on Cu(111) surface (Vacancy Formation Energy on Cu(111) surface (eVeV))

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

77Binding Energy of Vacancies (Binding Energy of Vacancies (eVeV))

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

78DOS of Sn/Cu(111)DOS of Sn/Cu(111)

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

79AdatomsAdatoms in Cu(111)in Cu(111)

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

80Defects levels in Si on HfODefects levels in Si on HfO22

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

81Surface study of Surface study of ZnOZnO: TCO for Solar Cells & Model : TCO for Solar Cells & Model

catalyst for catalyst for MethonolMethonol synthesissynthesis

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

82NonpolarNonpolar Surfaces of Surfaces of ZnOZnO(10(10--10) surface10) surface

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

83Polar Surfaces of Polar Surfaces of ZnOZnO

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

84

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

85MgOMgO NanoNano--structuresstructures

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

86Why lowWhy low--coordinated sites are important?coordinated sites are important?

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

87Energy Mapping of Energy Mapping of MgOMgO surfacessurfaces

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

88

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

89

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

90

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

91

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

92

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

93Defects in disordered materialsDefects in disordered materials

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

94

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

95

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

96

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

97

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

98

P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 15 April2010 Investigation of Defects from DFT-II

99