HW 8, Math 319, Fall 2016Β Β· 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of 𝑓...

Post on 31-Jul-2020

1 views 0 download

Transcript of HW 8, Math 319, Fall 2016Β Β· 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of 𝑓...

HW 8, Math 319, Fall 2016

Nasser M. Abbasi (Discussion section 44272, Th 4:35PM-5:25 PM)

December 30, 2019

Contents

1 HW 8 21.1 Section 6.1 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Section 6.1 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Section 6.1 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.4 Section 6.1 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.5 Section 6.2 problem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.6 Section 6.2 problem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.7 Section 6.2 problem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.8 Section 6.2 problem 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.9 Section 6.2 problem 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.10 Section 6.2 problem 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.11 Section 6.2 problem 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.12 Section 6.3 problem 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.12.1 Part (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.12.2 Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.12.3 Part (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.13 Section 6.3 problem 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.14 Section 6.3 problem 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.15 Section 6.3 problem 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.16 Section 6.3 problem 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161.17 Section 6.3 problem 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171.18 Section 6.3 problem 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171.19 Section 6.3 problem 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181.20 Section 6.3 problem 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181.21 Section 6.4 problem 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.21.1 Part (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191.21.2 Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201.21.3 Part (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211.21.4 Part(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1

2

1 HW 8

1.1 Section 6.1 problem 7

Find Laplace Transform of 𝑓 (𝑑) = cosh (𝑏𝑑)

solution Since cosh (𝑏𝑑) = 𝑒𝑏𝑑+π‘’βˆ’π‘π‘‘

2 then

β„’ cosh (𝑏𝑑) = 12ℒ�𝑒𝑏𝑑 + π‘’βˆ’π‘π‘‘οΏ½

=12οΏ½β„’ 𝑒𝑏𝑑 +β„’π‘’βˆ’π‘π‘‘οΏ½

But

ℒ𝑒𝑏𝑑 =1

𝑠 βˆ’ 𝑏

For 𝑠 > 𝑏 and

ℒ𝑒𝑏𝑑 =1

𝑠 βˆ’ 𝑏

For 𝑠 < 𝑏. Hence

β„’ cosh (𝑏𝑑) = 12 οΏ½

1𝑠 βˆ’ 𝑏

+1

𝑠 + 𝑏�

=𝑠2

𝑠2 βˆ’ 𝑏2

For 𝑠 > |𝑏|

1.2 Section 6.1 problem 8

Find Laplace Transform of 𝑓 (𝑑) = sinh (𝑏𝑑)

solution Since sinh (𝑏𝑑) = π‘’π‘π‘‘βˆ’π‘’βˆ’π‘π‘‘

2 then

β„’ sinh (𝑏𝑑) = 12ℒ�𝑒𝑏𝑑 βˆ’ π‘’βˆ’π‘π‘‘οΏ½

=12οΏ½β„’ 𝑒𝑏𝑑 βˆ’β„’ π‘’βˆ’π‘π‘‘οΏ½

But, as we found in the last problem

ℒ𝑒𝑏𝑑 =1

𝑠 βˆ’ 𝑏𝑠 > 𝑏

And

β„’π‘’βˆ’π‘π‘‘ =1

𝑠 + 𝑏𝑠 < 𝑏

3

Therefore

β„’ sinh (𝑏𝑑) = 12 οΏ½

1𝑠 βˆ’ 𝑏

βˆ’1

𝑠 + 𝑏�𝑠 > 𝑏; 𝑠 < 𝑏

=𝑏

𝑠2 βˆ’ 𝑏2𝑠 > |𝑏|

1.3 Section 6.1 problem 9

Find Laplace Transform of 𝑓 (𝑑) = π‘’π‘Žπ‘‘ cosh (𝑏𝑑)

solution Using the property that

π‘’π‘Žπ‘‘π‘“ (𝑑)⟺ 𝐹 (𝑠 βˆ’ π‘Ž)

Where 𝑓 (𝑑) = cosh (𝑏𝑑) now. We already found above that cosh (𝑏𝑑)⟺ 𝑠𝑠2βˆ’π‘2 , for 𝑠 > |𝑏|. In other words,

𝐹 (𝑠) = 𝑠𝑠2βˆ’π‘2 , therefore

π‘’π‘Žπ‘‘ cosh (𝑏𝑑)⟺(𝑠 βˆ’ π‘Ž)

(𝑠 βˆ’ π‘Ž)2 βˆ’ 𝑏2𝑠 βˆ’ π‘Ž > |𝑏|

1.4 Section 6.1 problem 10

Find Laplace Transform of 𝑓 (𝑑) = π‘’π‘Žπ‘‘ sinh (𝑏𝑑)

solution Using the property that

π‘’π‘Žπ‘‘π‘“ (𝑑)⟺ 𝐹 (𝑠 βˆ’ π‘Ž)

Where 𝑓 (𝑑) = sinh (𝑏𝑑) now. We already found above that sinh (𝑏𝑑)⟺ 𝑏𝑠2βˆ’π‘2 , for 𝑠 > |𝑏|. In other words,

𝐹 (𝑠) = 𝑏𝑠2βˆ’π‘2 , therefore

π‘’π‘Žπ‘‘ sinh (𝑏𝑑)⟺ 𝑏(𝑠 βˆ’ π‘Ž)2 βˆ’ 𝑏2

𝑠 βˆ’ π‘Ž > |𝑏|

1.5 Section 6.2 problem 17

Use Laplace transform to solve 𝑦(4) βˆ’4𝑦′′′ +6𝑦′′ βˆ’4𝑦′ +𝑦 = 0 for 𝑦 (0) = 0, 𝑦′ (0) = 1, 𝑦′′ (0) = 0, 𝑦′′′ (0) = 1

Solution Taking Laplace transform of the ODE gives

ℒ�𝑦(4)οΏ½ βˆ’ 4ℒ�𝑦′′′� + 6ℒ�𝑦′′� βˆ’ 4ℒ�𝑦′� +ℒ�𝑦� = 0 (1)

Let ℒ�𝑦� = π‘Œ (𝑠) then

ℒ�𝑦(4)οΏ½ = 𝑠4π‘Œ (𝑠) βˆ’ 𝑠3𝑦 (0) βˆ’ 𝑠2𝑦′ (0) βˆ’ 𝑠𝑦′′ (0) βˆ’ 𝑦′′′ (0)

= 𝑠4π‘Œ (𝑠) βˆ’ 𝑠3 (0) βˆ’ 𝑠2 (1) βˆ’ 𝑠 (0) βˆ’ 1= 𝑠4π‘Œ (𝑠) βˆ’ 𝑠2 βˆ’ 1

And

ℒ�𝑦′′′� = 𝑠3π‘Œ (𝑠) βˆ’ 𝑠2𝑦 (0) βˆ’ 𝑠𝑦′ (0) βˆ’ 𝑦′′ (0)

= 𝑠3π‘Œ (𝑠) βˆ’ 𝑠2 (0) βˆ’ 𝑠 (1) βˆ’ 0= 𝑠3π‘Œ (𝑠) βˆ’ 𝑠

4

And

ℒ�𝑦′′� = 𝑠2π‘Œ (𝑠) βˆ’ 𝑠𝑦 (0) βˆ’ 𝑦′ (0)

= 𝑠2π‘Œ (𝑠) βˆ’ 𝑠 (0) βˆ’ 1= 𝑠2π‘Œ (𝑠) βˆ’ 1

And

ℒ�𝑦′� = π‘ π‘Œ (𝑠) βˆ’ 𝑦 (0)

= π‘ π‘Œ (𝑠)

Hence (1) becomes

�𝑠4π‘Œ (𝑠) βˆ’ 𝑠2 βˆ’ 1οΏ½ βˆ’ 4 �𝑠3π‘Œ (𝑠) βˆ’ 𝑠� + 6 �𝑠2π‘Œ (𝑠) βˆ’ 1οΏ½ βˆ’ 4 (π‘ π‘Œ (𝑠)) + π‘Œ (𝑠) = 0

π‘Œ (𝑠) �𝑠4 βˆ’ 4𝑠3 + 6𝑠2 βˆ’ 4𝑠 + 1οΏ½ βˆ’ 𝑠2 βˆ’ 1 + 4𝑠 βˆ’ 6 = 0

Therefore

π‘Œ (𝑠) =𝑠2 βˆ’ 4𝑠 + 7

𝑠4 βˆ’ 4𝑠3 + 6𝑠2 βˆ’ 4𝑠 + 1

=𝑠2 βˆ’ 4𝑠 + 7(𝑠 βˆ’ 1)4

=𝑠2

(𝑠 βˆ’ 1)4βˆ’

4𝑠(𝑠 βˆ’ 1)4

+7

(𝑠 βˆ’ 1)4(2)

But

𝑠2

(𝑠 βˆ’ 1)4=(𝑠 βˆ’ 1)2 βˆ’ 1 + 2𝑠

(𝑠 βˆ’ 1)4

=(𝑠 βˆ’ 1)2

(𝑠 βˆ’ 1)4βˆ’

1(𝑠 βˆ’ 1)4

+ 2(𝑠 βˆ’ 1) + 1(𝑠 βˆ’ 1)4

=1

(𝑠 βˆ’ 1)2βˆ’

1(𝑠 βˆ’ 1)4

+ 2(𝑠 βˆ’ 1)(𝑠 βˆ’ 1)4

+ 21

(𝑠 βˆ’ 1)4

=1

(𝑠 βˆ’ 1)2βˆ’

1(𝑠 βˆ’ 1)4

+ 21

(𝑠 βˆ’ 1)3+ 2

1(𝑠 βˆ’ 1)4

=1

(𝑠 βˆ’ 1)2+

2(𝑠 βˆ’ 1)3

+1

(𝑠 βˆ’ 1)4

And4𝑠

(𝑠 βˆ’ 1)4= 4

(𝑠 βˆ’ 1) + 1(𝑠 βˆ’ 1)4

= 4(𝑠 βˆ’ 1)(𝑠 βˆ’ 1)4

+ 41

(𝑠 βˆ’ 1)4

=4

(𝑠 βˆ’ 1)3+

4(𝑠 βˆ’ 1)4

Therefore (2) becomes

π‘Œ (𝑠) = οΏ½1

(𝑠 βˆ’ 1)2+

2(𝑠 βˆ’ 1)3

+1

(𝑠 βˆ’ 1)4οΏ½ βˆ’ οΏ½

4(𝑠 βˆ’ 1)3

+4

(𝑠 βˆ’ 1)4οΏ½ +

7(𝑠 βˆ’ 1)4

=1

(𝑠 βˆ’ 1)2βˆ’

2(𝑠 βˆ’ 1)3

+4

(𝑠 βˆ’ 1)4(3)

5

Now using property the shift property of 𝐹 (𝑠) together with1𝑠2⟺ 𝑑

1𝑠3⟺

𝑑2

21𝑠4⟺

𝑑3

6Therefore

1(𝑠 βˆ’ 1)2

βŸΊπ‘’π‘‘π‘‘

1(𝑠 βˆ’ 1)3

βŸΊπ‘’π‘‘π‘‘2

21

(𝑠 βˆ’ 1)4βŸΊπ‘’π‘‘

𝑑3

6

And (3) becomes

1(𝑠 βˆ’ 1)2

βˆ’2

(𝑠 βˆ’ 1)3+

4(𝑠 βˆ’ 1)4

βŸΊπ‘’π‘‘π‘‘ βˆ’ 2 �𝑒𝑑𝑑2

2 οΏ½+ 4 �𝑒𝑑

𝑑3

6 οΏ½

= 𝑒𝑑𝑑 βˆ’ 𝑒𝑑𝑑2 +23𝑒𝑑𝑑3

Hence

𝑦 (𝑑) = 𝑒𝑑 �𝑑 βˆ’ 𝑑2 +23𝑑3οΏ½

1.6 Section 6.2 problem 18

Use Laplace transform to solve 𝑦(4) βˆ’ 𝑦 = 0 for 𝑦 (0) = 1, 𝑦′ (0) = 0, 𝑦′′ (0) = 1, 𝑦′′′ (0) = 0

Solution Taking Laplace transform of the ODE gives

ℒ�𝑦(4)οΏ½ βˆ’β„’οΏ½π‘¦οΏ½ = 0 (1)

Let ℒ�𝑦� = π‘Œ (𝑠) then

ℒ�𝑦(4)οΏ½ = 𝑠4π‘Œ (𝑠) βˆ’ 𝑠3𝑦 (0) βˆ’ 𝑠2𝑦′ (0) βˆ’ 𝑠𝑦′′ (0) βˆ’ 𝑦′′′ (0)

= 𝑠4π‘Œ (𝑠) βˆ’ 𝑠3 (1) βˆ’ 𝑠2 (0) βˆ’ 𝑠 (1) βˆ’ 0= 𝑠4π‘Œ (𝑠) βˆ’ 𝑠3 βˆ’ 𝑠

Hence (1) becomes

𝑠4π‘Œ (𝑠) βˆ’ 𝑠3 βˆ’ 𝑠 βˆ’ π‘Œ (𝑠) = 0

6

Solving for π‘Œ (𝑠) gives

π‘Œ (𝑠) =𝑠3 + 𝑠𝑠4 βˆ’ 1

=𝑠 �𝑠2 + 1�𝑠4 βˆ’ 1

=𝑠 �𝑠2 + 1οΏ½

�𝑠2 βˆ’ 1οΏ½ �𝑠2 + 1οΏ½

=𝑠

𝑠2 βˆ’ 1But, Hence above becomes, where π‘Ž = 1

𝑠𝑠2 βˆ’ 1

⟺ cosh (𝑑)

Hence

𝑦 (𝑑) = cosh (π‘Žπ‘‘)

1.7 Section 6.2 problem 19

Use Laplace transform to solve 𝑦(4) βˆ’ 4𝑦 = 0 for 𝑦 (0) = 1, 𝑦′ (0) = 0, 𝑦′′ (0) = βˆ’2, 𝑦′′′ (0) = 0

Solution Taking Laplace transform of the ODE gives

ℒ�𝑦(4)οΏ½ βˆ’ 4ℒ�𝑦� = 0 (1)

Let ℒ�𝑦� = π‘Œ (𝑠) then

ℒ�𝑦(4)οΏ½ = 𝑠4π‘Œ (𝑠) βˆ’ 𝑠3𝑦 (0) βˆ’ 𝑠2𝑦′ (0) βˆ’ 𝑠𝑦′′ (0) βˆ’ 𝑦′′′ (0)

= 𝑠4π‘Œ (𝑠) βˆ’ 𝑠3 (1) βˆ’ 𝑠2 (0) βˆ’ 𝑠 (βˆ’2) βˆ’ 0= 𝑠4π‘Œ (𝑠) βˆ’ 𝑠3 + 2𝑠

Hence (1) becomes

𝑠4π‘Œ (𝑠) βˆ’ 𝑠3 + 2𝑠 βˆ’ 4π‘Œ (𝑠) = 0

Solving for π‘Œ (𝑠) gives

π‘Œ (𝑠) =𝑠3 βˆ’ 2𝑠𝑠4 βˆ’ 4

=𝑠3 βˆ’ 2𝑠

�𝑠2 βˆ’ 2οΏ½ �𝑠2 + 2οΏ½

=𝑠 �𝑠2 βˆ’ 2οΏ½

�𝑠2 βˆ’ 2οΏ½ �𝑠2 + 2οΏ½

=𝑠

�𝑠2 + 2οΏ½

Using cos (π‘Žπ‘‘)⟺ 𝑠𝑠2+π‘Ž2 , the above becomes, where π‘Ž = √2

𝑠�𝑠2 + 2οΏ½

⟺ cos �√2𝑑�

7

Hence

𝑦 (𝑑) = cos �√2𝑑�

1.8 Section 6.2 problem 20

Use Laplace transform to solve 𝑦′′ + πœ”2𝑦 = cos 2𝑑; πœ”2 β‰  4; 𝑦 (0) = 1, 𝑦′ (0) = 0

Solution Let π‘Œ (𝑠) = ℒ�𝑦 (𝑑)οΏ½. Taking Laplace transform of the ODE, and using cos (π‘Žπ‘‘)⟺ 𝑠𝑠2+π‘Ž2 gives

𝑠2π‘Œ (𝑠) βˆ’ 𝑠𝑦 (0) βˆ’ 𝑦′ (0) + πœ”2π‘Œ (𝑠) =𝑠

𝑠2 + 4(1)

Applying initial conditions

𝑠2π‘Œ (𝑠) βˆ’ 𝑠 + πœ”2π‘Œ (𝑠) =𝑠

𝑠2 + 4Solving for π‘Œ (𝑠)

π‘Œ (𝑠) �𝑠2 + πœ”2οΏ½ βˆ’ 𝑠 =𝑠

𝑠2 + 4π‘Œ (𝑠) =

𝑠�𝑠2 + 4οΏ½ �𝑠2 + πœ”2οΏ½

+𝑠

�𝑠2 + πœ”2οΏ½(2)

But𝑠

�𝑠2 + 4οΏ½ �𝑠2 + πœ”2οΏ½=𝐴𝑠 + 𝐡�𝑠2 + 4οΏ½

+𝐢𝑠 + 𝐷�𝑠2 + πœ”2οΏ½

𝑠 = (𝐴𝑠 + 𝐡) �𝑠2 + πœ”2οΏ½ + (𝐢𝑠 + 𝐷) �𝑠2 + 4οΏ½

𝑠 = 4𝐷 + 𝐴𝑠3 + 𝐡𝑠2 + 𝐢𝑠3 + π΅πœ”2 + 𝑠2𝐷 + 4𝐢𝑠 + π΄π‘ πœ”2

𝑠 = οΏ½4𝐷 + π΅πœ”2οΏ½ + 𝑠 οΏ½4𝐢 + π΄πœ”2οΏ½ + 𝑠2 (𝐡 + 𝐷) + 𝑠3 (𝐴 + 𝐢)

Hence

4𝐷 + π΅πœ”2 = 04𝐢 + π΄πœ”2 = 1

𝐡 + 𝐷 = 0𝐴 + 𝐢 = 0

Equation (2,4) gives 𝐴 = 1πœ”2βˆ’4 , 𝐢 =

14βˆ’πœ”2 and (1,3) gives 𝐡 = 0,𝐷 = 0. Hence

𝑠�𝑠2 + 4οΏ½ �𝑠2 + πœ”2οΏ½

= οΏ½1

πœ”2 βˆ’ 4�𝑠

�𝑠2 + 4οΏ½+ οΏ½

14 βˆ’ πœ”2 οΏ½

𝑠�𝑠2 + πœ”2οΏ½

Therefore (2) becomes

π‘Œ (𝑠) = οΏ½1

πœ”2 βˆ’ 4�𝑠

�𝑠2 + 4οΏ½+ οΏ½

14 βˆ’ πœ”2 οΏ½

𝑠�𝑠2 + πœ”2οΏ½

+𝑠

�𝑠2 + πœ”2οΏ½

= οΏ½1

πœ”2 βˆ’ 4�𝑠

�𝑠2 + 4οΏ½+ οΏ½

5 βˆ’ πœ”2

4 βˆ’ πœ”2 �𝑠

�𝑠2 + πœ”2οΏ½

8

Using cos (π‘Žπ‘‘)⟺ 𝑠𝑠2+π‘Ž2 , the above becomes

οΏ½1

πœ”2 βˆ’ 4�𝑠

�𝑠2 + 4οΏ½+ οΏ½

5 βˆ’ πœ”2

4 βˆ’ πœ”2 �𝑠

�𝑠2 + πœ”2�⟺ οΏ½

1πœ”2 βˆ’ 4οΏ½

cos (2𝑑) + οΏ½5 βˆ’ πœ”2

4 βˆ’ πœ”2 οΏ½ cos (πœ”π‘‘)

= οΏ½1

πœ”2 βˆ’ 4οΏ½cos (2𝑑) + οΏ½

πœ”2 βˆ’ 5πœ”2 βˆ’ 4οΏ½

cos (πœ”π‘‘)

Hence

𝑦 (𝑑) = οΏ½1

πœ”2 βˆ’ 4οΏ½cos (2𝑑) + οΏ½

πœ”2 βˆ’ 5πœ”2 βˆ’ 4οΏ½

cos (πœ”π‘‘)

=οΏ½πœ”2 βˆ’ 5οΏ½ cos (πœ”π‘‘) + cos (2𝑑)

πœ”2 βˆ’ 4

1.9 Section 6.2 problem 21

Use Laplace transform to solve 𝑦′′ βˆ’ 2𝑦′ + 2𝑦 = cos 𝑑; 𝑦 (0) = 1, 𝑦′ (0) = 0

Solution Let π‘Œ (𝑠) = ℒ�𝑦 (𝑑)οΏ½. Taking Laplace transform of the ODE, and using cos (π‘Žπ‘‘)⟺ 𝑠𝑠2+π‘Ž2 gives

�𝑠2π‘Œ (𝑠) βˆ’ 𝑠𝑦 (0) βˆ’ 𝑦′ (0)οΏ½ βˆ’ 2 οΏ½π‘ π‘Œ (𝑠) βˆ’ 𝑦 (0)οΏ½ + 2π‘Œ (𝑠) =𝑠

𝑠2 + 1(1)

Applying initial conditions

𝑠2π‘Œ (𝑠) βˆ’ 𝑠 βˆ’ 2 (π‘ π‘Œ (𝑠) βˆ’ 1) + 2π‘Œ (𝑠) =𝑠

𝑠2 + 1Solving for π‘Œ (𝑠)

𝑠2π‘Œ (𝑠) βˆ’ 𝑠 βˆ’ 2π‘ π‘Œ (𝑠) + 2 + 2π‘Œ (𝑠) =𝑠

𝑠2 + 1π‘Œ (𝑠) �𝑠2 βˆ’ 2𝑠 + 2οΏ½ βˆ’ 𝑠 + 2 =

𝑠𝑠2 + 1

π‘Œ (𝑠) =𝑠

�𝑠2 + 1οΏ½ �𝑠2 βˆ’ 2𝑠 + 2οΏ½+

𝑠�𝑠2 βˆ’ 2𝑠 + 2οΏ½

βˆ’2

�𝑠2 βˆ’ 2𝑠 + 2οΏ½(2)

But𝑠

�𝑠2 + 1οΏ½ �𝑠2 βˆ’ 2𝑠 + 2οΏ½=𝐴𝑠 + 𝐡�𝑠2 + 1οΏ½

+𝐢𝑠 + 𝐷

𝑠2 βˆ’ 2𝑠 + 2

𝑠 = (𝐴𝑠 + 𝐡) �𝑠2 βˆ’ 2𝑠 + 2οΏ½ + (𝐢𝑠 + 𝐷) �𝑠2 + 1οΏ½

𝑠 = 2𝐡 + 𝐷 βˆ’ 2𝐴𝑠2 + 𝐴𝑠3 + 𝐡𝑠2 + 𝐢𝑠3 + 𝑠2𝐷 + 2𝐴𝑠 βˆ’ 2𝐡𝑠 + 𝐢𝑠𝑠 = (2𝐡 + 𝐷) + 𝑠 (2𝐴 βˆ’ 2𝐡 + 𝐢) + 𝑠2 (βˆ’2𝐴 + 𝐡 + 𝐷) + 𝑠3 (𝐴 + 𝐢)

Hence

2𝐡 + 𝐷 = 02𝐴 βˆ’ 2𝐡 + 𝐢 = 1βˆ’2𝐴 + 𝐡 + 𝐷 = 0

𝐴 + 𝐢 = 0

9

Solving gives 𝐴 = 15 , 𝐡 = βˆ’

25 , 𝐢 = βˆ’

15 , 𝐷 = 4

5 , hence

𝑠�𝑠2 + 1οΏ½ �𝑠2 βˆ’ 2𝑠 + 2οΏ½

=15

𝑠 βˆ’ 2�𝑠2 + 1οΏ½

βˆ’15

𝑠 βˆ’ 4𝑠2 βˆ’ 2𝑠 + 2

=15

𝑠𝑠2 + 1

βˆ’25

1𝑠2 + 1

βˆ’15

𝑠𝑠2 βˆ’ 2𝑠 + 2

+45

1𝑠2 βˆ’ 2𝑠 + 2

(3)

Completing the squares for

𝑠2 βˆ’ 2𝑠 + 2 = π‘Ž (𝑠 + 𝑏)2 + 𝑑

= π‘Ž �𝑠2 + 𝑏2 + 2𝑏𝑠� + 𝑑

= π‘Žπ‘ 2 + π‘Žπ‘2 + 2π‘Žπ‘π‘  + 𝑑

Hence π‘Ž = 1, 2π‘Žπ‘ = βˆ’2, οΏ½π‘Žπ‘2 + 𝑑� = 2, hence 𝑏 = βˆ’1, 𝑑 = 1, hence

𝑠2 βˆ’ 2𝑠 + 2 = (𝑠 βˆ’ 1)2 + 1

Hence (3) becomes𝑠

�𝑠2 + 1οΏ½ �𝑠2 βˆ’ 2𝑠 + 2οΏ½=15

𝑠𝑠2 + 1

βˆ’25

1𝑠2 + 1

βˆ’15

𝑠(𝑠 βˆ’ 1)2 + 1

+45

1(𝑠 βˆ’ 1)2 + 1

=15

𝑠𝑠2 + 1

βˆ’25

1𝑠2 + 1

βˆ’15(𝑠 βˆ’ 1) + 1(𝑠 βˆ’ 1)2 + 1

+45

1(𝑠 βˆ’ 1)2 + 1

=15

𝑠𝑠2 + 1

βˆ’25

1𝑠2 + 1

βˆ’15

(𝑠 βˆ’ 1)(𝑠 βˆ’ 1)2 + 1

βˆ’15

1(𝑠 βˆ’ 1)2 + 1

+45

1(𝑠 βˆ’ 1)2 + 1

=15

𝑠𝑠2 + 1

βˆ’25

1𝑠2 + 1

βˆ’15

(𝑠 βˆ’ 1)(𝑠 βˆ’ 1)2 + 1

+35

1(𝑠 βˆ’ 1)2 + 1

Therefore (2) becomes

π‘Œ (𝑠) =15

𝑠𝑠2 + 1

βˆ’25

1𝑠2 + 1

βˆ’15

(𝑠 βˆ’ 1)(𝑠 βˆ’ 1)2 + 1

+35

1(𝑠 βˆ’ 1)2 + 1

+𝑠

(𝑠 βˆ’ 1)2 + 1βˆ’

2(𝑠 βˆ’ 1)2 + 1

=15

𝑠𝑠2 + 1

βˆ’25

1𝑠2 + 1

βˆ’15

(𝑠 βˆ’ 1)(𝑠 βˆ’ 1)2 + 1

+35

1(𝑠 βˆ’ 1)2 + 1

+(𝑠 βˆ’ 1) + 1(𝑠 βˆ’ 1)2 + 1

βˆ’2

(𝑠 βˆ’ 1)2 + 1

=15

𝑠𝑠2 + 1

βˆ’25

1𝑠2 + 1

βˆ’15

(𝑠 βˆ’ 1)(𝑠 βˆ’ 1)2 + 1

+35

1(𝑠 βˆ’ 1)2 + 1

+(𝑠 βˆ’ 1)

(𝑠 βˆ’ 1)2 + 1+

1(𝑠 βˆ’ 1)2 + 1

βˆ’2

(𝑠 βˆ’ 1)2 + 1

=15

𝑠𝑠2 + 1

βˆ’25

1𝑠2 + 1

+45

(𝑠 βˆ’ 1)(𝑠 βˆ’ 1)2 + 1

βˆ’25

1(𝑠 βˆ’ 1)2 + 1

Using cos (π‘Žπ‘‘)⟺ 𝑠𝑠2+π‘Ž2 , sin (π‘Žπ‘‘)⟺

π‘Žπ‘ 2+π‘Ž2 and the shift property of Laplace transform, then

15

𝑠𝑠2 + 1

⟺15

cos (𝑑)

25

1𝑠2 + 1

⟺25

sin (𝑑)

45

(𝑠 βˆ’ 1)(𝑠 βˆ’ 1)2 + 1

⟺45𝑒𝑑 cos 𝑑

25

1(𝑠 βˆ’ 1)2 + 1

⟺85𝑒𝑑 sin 𝑑

10

Hence

𝑦 (𝑑) =15

cos (𝑑) βˆ’ 25

sin (𝑑) + 45𝑒𝑑 cos 𝑑 βˆ’ 2

5𝑒𝑑 sin 𝑑

15οΏ½cos 𝑑 βˆ’ 2 sin 𝑑 + 4𝑒𝑑 cos 𝑑 βˆ’ 2𝑒𝑑 sin 𝑑�

1.10 Section 6.2 problem 22

Use Laplace transform to solve 𝑦′′ βˆ’ 2𝑦′ + 2𝑦 = π‘’βˆ’π‘‘; 𝑦 (0) = 0, 𝑦′ (0) = 1

Solution Let π‘Œ (𝑠) = ℒ�𝑦 (𝑑)οΏ½. Taking Laplace transform of the ODE, and using π‘’βˆ’π‘‘ ⟺ 1𝑠+1 gives

�𝑠2π‘Œ (𝑠) βˆ’ 𝑠𝑦 (0) βˆ’ 𝑦′ (0)οΏ½ βˆ’ 2 οΏ½π‘ π‘Œ (𝑠) βˆ’ 𝑦 (0)οΏ½ + 2π‘Œ (𝑠) =1

𝑠 + 1(1)

Applying initial conditions gives

𝑠2π‘Œ (𝑠) βˆ’ 1 βˆ’ 2π‘ π‘Œ (𝑠) + 2π‘Œ (𝑠) =1

𝑠 + 1Solving for π‘Œ (𝑠)

π‘Œ (𝑠) �𝑠2 βˆ’ 2𝑠 + 2οΏ½ βˆ’ 1 =1

𝑠 + 1

π‘Œ (𝑠) =1

(𝑠 + 1) �𝑠2 βˆ’ 2𝑠 + 2οΏ½+

1𝑠2 βˆ’ 2𝑠 + 2

(2)

But1

(𝑠 + 1) �𝑠2 βˆ’ 2𝑠 + 2οΏ½=

𝐴𝑠 + 1

+𝐡𝑠 + 𝐢

𝑠2 βˆ’ 2𝑠 + 2

1 = 𝐴 �𝑠2 βˆ’ 2𝑠 + 2οΏ½ + (𝐡𝑠 + 𝐢) (𝑠 + 1)

1 = 2𝐴 + 𝐢 + 𝐴𝑠2 + 𝐡𝑠2 βˆ’ 2𝐴𝑠 + 𝐡𝑠 + 𝐢𝑠1 = (2𝐴 + 𝐢) + 𝑠 (βˆ’2𝐴 + 𝐡 + 𝐢) + 𝑠2 (𝐴 + 𝐡)

Hence

1 = 2𝐴 + 𝐢0 = βˆ’2𝐴 + 𝐡 + 𝐢0 = 𝐴 + 𝐡

Solving gives 𝐴 = 15 , 𝐡 = βˆ’

15 , 𝐢 =

35 , therefore

1(𝑠 + 1) �𝑠2 βˆ’ 2𝑠 + 2οΏ½

=15

1𝑠 + 1

+βˆ’ 15 𝑠 +

35

𝑠2 βˆ’ 2𝑠 + 2

=15

1𝑠 + 1

βˆ’15

𝑠𝑠2 βˆ’ 2𝑠 + 2

+ +35

1𝑠2 βˆ’ 2𝑠 + 2

Completing the square for 𝑠2 βˆ’ 2𝑠 + 2 which was done in last problem, gives (𝑠 βˆ’ 1)2 + 1, hence the

11

above becomes1

(𝑠 + 1) �𝑠2 βˆ’ 2𝑠 + 2οΏ½=15

1𝑠 + 1

βˆ’15

𝑠(𝑠 βˆ’ 1)2 + 1

+ +35

1(𝑠 βˆ’ 1)2 + 1

=15

1𝑠 + 1

βˆ’15(𝑠 βˆ’ 1) + 1(𝑠 βˆ’ 1)2 + 1

+35

1(𝑠 βˆ’ 1)2 + 1

=15

1𝑠 + 1

βˆ’15

(𝑠 βˆ’ 1)(𝑠 βˆ’ 1)2 + 1

βˆ’15

1(𝑠 βˆ’ 1)2 + 1

+35

1(𝑠 βˆ’ 1)2 + 1

=15

1𝑠 + 1

βˆ’15

(𝑠 βˆ’ 1)(𝑠 βˆ’ 1)2 + 1

+25

1(𝑠 βˆ’ 1)2 + 1

Therefore (2) becomes

π‘Œ (𝑠) =15

1𝑠 + 1

βˆ’15

(𝑠 βˆ’ 1)(𝑠 βˆ’ 1)2 + 1

+25

1(𝑠 βˆ’ 1)2 + 1

+1

(𝑠 βˆ’ 1)2 + 1

Using cos (π‘Žπ‘‘)⟺ 𝑠𝑠2+π‘Ž2 , sin (π‘Žπ‘‘)⟺

π‘Žπ‘ 2+π‘Ž2 and the shift property of Laplace transform, then

15

1𝑠 + 1

⟺15π‘’βˆ’π‘‘

15

(𝑠 βˆ’ 1)(𝑠 βˆ’ 1)2 + 1

⟺15𝑒𝑑 cos 𝑑

25

1(𝑠 βˆ’ 1)2 + 1

⟺25𝑒𝑑 sin 𝑑

1(𝑠 βˆ’ 1)2 + 1

⟺ 𝑒𝑑 sin 𝑑

Hence

𝑦 (𝑑) =15π‘’βˆ’π‘‘ βˆ’

15𝑒𝑑 cos 𝑑 + 2

5𝑒𝑑 sin 𝑑 + 𝑒𝑑 sin 𝑑

=15οΏ½π‘’βˆ’π‘‘ βˆ’ 𝑒𝑑 cos 𝑑 + 7𝑒𝑑 sin 𝑑�

1.11 Section 6.2 problem 23

Use Laplace transform to solve 𝑦′′ + 2𝑦′ + 𝑦 = 4π‘’βˆ’π‘‘; 𝑦 (0) = 2, 𝑦′ (0) = βˆ’1

Solution Let π‘Œ (𝑠) = ℒ�𝑦 (𝑑)οΏ½. Taking Laplace transform of the ODE, and using π‘’βˆ’π‘‘ ⟺ 1𝑠+1 gives

�𝑠2π‘Œ (𝑠) βˆ’ 𝑠𝑦 (0) βˆ’ 𝑦′ (0)οΏ½ + 2 οΏ½π‘ π‘Œ (𝑠) βˆ’ 𝑦 (0)οΏ½ + π‘Œ (𝑠) =4

𝑠 + 1(1)

Applying initial conditions gives

�𝑠2π‘Œ (𝑠) βˆ’ 2𝑠 + 1οΏ½ + 2 (π‘ π‘Œ (𝑠) βˆ’ 2) + π‘Œ (𝑠) =4

𝑠 + 1Solving for π‘Œ (𝑠)

π‘Œ (𝑠) �𝑠2 + 2𝑠 + 1οΏ½ βˆ’ 2𝑠 + 1 βˆ’ 4 =4

𝑠 + 1

π‘Œ (𝑠) �𝑠2 + 2𝑠 + 1οΏ½ =4

𝑠 + 1+ 2𝑠 βˆ’ 1 + 4

π‘Œ (𝑠) =4

(𝑠 + 1) �𝑠2 + 2𝑠 + 1οΏ½+

2𝑠�𝑠2 + 2𝑠 + 1οΏ½

βˆ’1

�𝑠2 + 2𝑠 + 1οΏ½+

4�𝑠2 + 2𝑠 + 1οΏ½

12

But �𝑠2 + 2𝑠 + 1οΏ½ = (𝑠 + 1)2, hence

π‘Œ (𝑠) =4

(𝑠 + 1)3+

2𝑠(𝑠 + 1)2

βˆ’1

(𝑠 + 1)2+

4(𝑠 + 1)2

(2)

But2𝑠

(𝑠 + 1)2= 2

𝑠 + 1 βˆ’ 1(𝑠 + 1)2

= 2(𝑠 + 1)(𝑠 + 1)2

βˆ’ 21

(𝑠 + 1)2

= 21

𝑠 + 1βˆ’ 2

1(𝑠 + 1)2

Hence (2) becomes

π‘Œ (𝑠) =4

(𝑠 + 1)3+ 2

1𝑠 + 1

βˆ’ 21

(𝑠 + 1)2βˆ’

1(𝑠 + 1)2

+4

(𝑠 + 1)2(3)

We now ready to do the inversion. Since 1𝑠3 ⟺

𝑑2

2 and 1𝑠2 ⟺ 𝑑 and 1

𝑠 ⟺1 and using the shift propertyπ‘’π‘Žπ‘‘π‘“ (𝑑)⟺ 𝐹 (𝑠 βˆ’ π‘Ž), then using these into (3) gives

4(𝑠 + 1)3

⟺4π‘’βˆ’π‘‘ �𝑑2

2 οΏ½

21

𝑠 + 1⟺ 2π‘’βˆ’π‘‘

21

(𝑠 + 1)2⟺2π‘’βˆ’π‘‘π‘‘

1(𝑠 + 1)2

βŸΊπ‘’βˆ’π‘‘π‘‘

4(𝑠 + 1)2

⟺4π‘’βˆ’π‘‘π‘‘

Now (3) becomes

π‘Œ (𝑠)⟺ 4π‘’βˆ’π‘‘ �𝑑2

2 οΏ½+ 2π‘’βˆ’π‘‘ βˆ’ 2π‘’βˆ’π‘‘π‘‘ βˆ’ π‘’βˆ’π‘‘π‘‘ + 4π‘’βˆ’π‘‘π‘‘

= π‘’βˆ’π‘‘ οΏ½2𝑑2 + 2 βˆ’ 2𝑑 βˆ’ 𝑑 + 4𝑑�

= π‘’βˆ’π‘‘ οΏ½2𝑑2 + 𝑑 + 2οΏ½

1.12 Section 6.3 problem 25

Suppose that 𝐹 (𝑠) = ℒ�𝑓 (𝑑)οΏ½ exists for 𝑠 > π‘Ž β‰₯ 0.

1. Show that if 𝑐 is positive constant then ℒ�𝑓 (𝑐𝑑)οΏ½ = 1𝑐𝐹 οΏ½

𝑠𝑐� for 𝑠 > π‘π‘Ž

2. Show that if π‘˜ is positive constant then β„’ βˆ’1 {𝐹 (π‘˜π‘ )} = 1π‘˜π‘“ οΏ½

π‘‘π‘˜οΏ½

3. Show that if π‘Ž, 𝑏 are constants with π‘Ž > 0 then β„’ βˆ’1 {𝐹 (π‘Žπ‘  + 𝑏)} = 1π‘Ž 𝑒

βˆ’π‘π‘‘π‘Ž 𝑓 οΏ½ π‘‘π‘ŽοΏ½

Solution

13

1.12.1 Part (a)

From definition,

ℒ�𝑓 (𝑐𝑑)οΏ½ = �∞

0𝑓 (𝑐𝑑) π‘’βˆ’π‘ π‘‘π‘‘π‘‘

Let 𝑐𝑑 = 𝜏, then when 𝑑 = 0, 𝜏 = 0 and when 𝑑 = ∞, 𝜏 = ∞, and 𝑐 = π‘‘πœπ‘‘π‘‘ . Hence the above becomes

ℒ�𝑓 (𝑐𝑑)οΏ½ = �∞

0𝑓 (𝜏) π‘’βˆ’π‘ οΏ½

πœπ‘ οΏ½π‘‘πœπ‘

=1𝑐 οΏ½

∞

0𝑓 (𝜏) π‘’βˆ’πœοΏ½

𝑠𝑐 οΏ½π‘‘πœ

We see from above that ℒ�𝑓 (𝑐𝑑)οΏ½ is 1𝑐𝐹 οΏ½

𝑠𝑐� .Now we look at the conditions which makes the above

integral converges. Let

�𝑓 (𝜏) π‘’βˆ’πœοΏ½π‘ π‘ οΏ½οΏ½ ≀ π‘˜ οΏ½π‘’π‘Žπ‘‘π‘’βˆ’πœοΏ½

𝑠𝑐 οΏ½οΏ½

Where π‘˜ is some constant. Then

�∞

0𝑓 (𝑑) π‘’βˆ’π‘‘οΏ½

𝑠𝑐 �𝑑𝑑 ≀ π‘˜οΏ½

∞

0π‘’π‘Žπ‘‘π‘’βˆ’π‘‘οΏ½

𝑠𝑐 �𝑑𝑑

= π‘˜οΏ½βˆž

0π‘’βˆ’π‘‘οΏ½

π‘ π‘βˆ’π‘ŽοΏ½π‘‘π‘‘

But ∫∞

0π‘’βˆ’π‘‘οΏ½

π‘ π‘βˆ’π‘ŽοΏ½π‘‘πœ converges if 𝑠

𝑐 βˆ’ π‘Ž > 0 or

𝑠 > π‘π‘Ž

Hence this is the condition for ∫∞

0𝑓 (𝑑) π‘’βˆ’π‘‘οΏ½

𝑠𝑐 �𝑑𝑑 to converge. Which is what we required to show.

1.12.2 Part (b)

From definition

β„’οΏ½1π‘˜π‘“ οΏ½π‘‘π‘˜οΏ½οΏ½ =

1π‘˜β„’οΏ½π‘“ οΏ½

π‘‘π‘˜οΏ½οΏ½

=1π‘˜ οΏ½

∞

0𝑓 οΏ½π‘‘π‘˜οΏ½ π‘’βˆ’π‘ π‘‘π‘‘π‘‘

Let π‘‘π‘˜ = 𝜏. When 𝑑 = 0, 𝜏 = 0 and when 𝑑 = ∞, 𝜏 = ∞. 𝑑𝑑

π‘‘πœ = π‘˜, hence the above becomes

β„’οΏ½1π‘˜π‘“ οΏ½π‘‘π‘˜οΏ½οΏ½ =

1π‘˜ οΏ½

∞

0𝑓 (𝜏) π‘’βˆ’π‘ (π‘˜πœ) (π‘˜π‘‘πœ)

= �∞

0𝑓 (𝜏) π‘’βˆ’πœ(π‘ π‘˜)π‘‘πœ

We see from above that β„’οΏ½ 1π‘˜π‘“ οΏ½π‘‘π‘˜οΏ½οΏ½ is 𝐹 (π‘ π‘˜). In other words, β„’ βˆ’1 {𝐹 (π‘˜π‘ )} = 1

π‘˜π‘“ οΏ½π‘‘π‘˜οΏ½.

14

1.12.3 Part (c)

From definition

β„’οΏ½1π‘Žπ‘’βˆ’π‘π‘‘π‘Ž 𝑓 οΏ½

π‘‘π‘ŽοΏ½οΏ½ =

1π‘Žβ„’οΏ½π‘’

βˆ’π‘π‘‘π‘Ž 𝑓 οΏ½

π‘‘π‘ŽοΏ½οΏ½

=1π‘Ž οΏ½

∞

0π‘’βˆ’π‘π‘‘π‘Ž 𝑓 οΏ½

π‘‘π‘ŽοΏ½ π‘’βˆ’π‘ π‘‘π‘‘π‘‘

Let π‘‘π‘Ž = 𝜏, at 𝑑 = 0, 𝜏 = 0 and at 𝑑 = ∞, 𝜏 = ∞. And 𝑑𝑑

π‘‘πœ = π‘Ž, hence the above becomes

β„’οΏ½1π‘Žπ‘’βˆ’π‘π‘‘π‘Ž 𝑓 οΏ½

π‘‘π‘ŽοΏ½οΏ½ =

1π‘Ž οΏ½

∞

0π‘’βˆ’π‘(π‘Žπœ)

π‘Ž 𝑓 (𝜏) π‘’βˆ’π‘ (π‘Žπœ) (π‘Žπ‘‘πœ)

= �∞

0π‘’βˆ’π‘πœπ‘“ (𝜏) π‘’βˆ’πœ(π‘ π‘Ž)π‘‘πœ

= �∞

0𝑓 (𝜏) π‘’βˆ’πœ(π‘ π‘Ž+𝑏)π‘‘πœ

We see from the above, that β„’οΏ½ 1π‘Ž π‘’βˆ’π‘π‘‘π‘Ž 𝑓 οΏ½ π‘‘π‘ŽοΏ½οΏ½ = 𝐹 (π‘ π‘Ž + 𝑏). Now we look at the conditions which makes

the above integral converges. Let

�𝑓 (𝜏) π‘’βˆ’π‘‘(π‘ π‘Ž+𝑏)οΏ½ ≀ π‘˜ οΏ½π‘’π‘Žπ‘‘π‘’βˆ’π‘‘(π‘ π‘Ž+𝑏)οΏ½

Where π‘˜ is some constant. Then

�∞

0𝑓 (𝑑) π‘’βˆ’π‘‘(π‘ π‘Ž+𝑏)𝑑𝑑 ≀ π‘˜οΏ½

∞

0π‘’π‘Žπ‘‘π‘’βˆ’π‘‘(π‘ π‘Ž+𝑏)𝑑𝑑

= π‘˜οΏ½βˆž

0π‘’βˆ’π‘‘(π‘ π‘Ž+π‘βˆ’π‘Ž)𝑑𝑑

But ∫∞

0π‘’βˆ’π‘‘(π‘ π‘Ž+π‘βˆ’π‘Ž)𝑑𝑑 converges if π‘ π‘Ž + 𝑏 βˆ’ π‘Ž > 0 or π‘ π‘Ž > π‘Ž βˆ’ 𝑏 or 𝑠 > 1 βˆ’ 𝑏

π‘Ž

1.13 Section 6.3 problem 26

Find inverse Laplace transform of 𝐹 (𝑠) = 2𝑛+1𝑛!𝑠𝑛+1

Solution

We know from tables that𝑛!𝑠𝑛+1

⟺ 𝑑𝑛

Hence

2𝑛+1𝑛!𝑠𝑛+1

⟺2𝑛+1𝑑𝑛

= 2 (2𝑑)𝑛

1.14 Section 6.3 problem 27

Find inverse Laplace transform of 𝐹 (𝑠) = 2𝑠+14𝑠2+4𝑠+5

Solution

𝐹 (𝑠) =2𝑠

4𝑠2 + 4𝑠 + 5+

14𝑠2 + 4𝑠 + 5

15

But 4𝑠2 + 4𝑠 + 5 = 4 �𝑠 + 12οΏ½2+ 4, hence

𝐹 (𝑠) =2𝑠

4 �𝑠 + 12οΏ½2+ 4

+1

4 �𝑠 + 12οΏ½2+ 4

=𝑠

2 �𝑠 + 12οΏ½2+ 2

+14

1

�𝑠 + 12οΏ½2+ 1

=12

𝑠

�𝑠 + 12οΏ½2+ 1

+14

1

�𝑠 + 12οΏ½2+ 1

=12𝑠 + 1

2 βˆ’12

�𝑠 + 12οΏ½2+ 1

+14

1

�𝑠 + 12οΏ½2+ 1

=12

𝑠 + 12

�𝑠 + 12οΏ½2+ 1

βˆ’14

1

�𝑠 + 12οΏ½2+ 1

+14

1

�𝑠 + 12οΏ½2+ 1

=12

𝑠 + 12

�𝑠 + 12οΏ½2+ 1

(1)

Now we ready to do the inversion. Using π‘’βˆ’π‘Žπ‘‘π‘“ (𝑑) ⟺ 𝐹 (𝑠 + π‘Ž) and using sin (π‘Žπ‘‘) ⟺ π‘Žπ‘ 2+π‘Ž2 , and

cos (π‘Žπ‘‘)⟺ 𝑠𝑠2+π‘Ž2 then

12

𝑠 + 12

�𝑠 + 12οΏ½2+ 1

⟺12π‘’βˆ’

12 𝑑 cos (𝑑)

Hence

𝑓 (𝑑) =12π‘’βˆ’

12 𝑑 cos (𝑑)

1.15 Section 6.3 problem 28

Find inverse Laplace transform of 𝐹 (𝑠) = 19𝑠2βˆ’12𝑠+3

Solution

19𝑠2 βˆ’ 12𝑠 + 3

=19

1𝑠2 βˆ’ 4

3 𝑠 +13

=19

1

(𝑠 βˆ’ 1) �𝑠 βˆ’ 13οΏ½

16

But1

(𝑠 βˆ’ 1) �𝑠 βˆ’ 13οΏ½=

𝐴𝑠 βˆ’ 1

+𝐡

𝑠 βˆ’ 13

𝐴 =

βŽ›βŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽœβŽ

1

�𝑠 βˆ’ 13οΏ½

βŽžβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽŸβŽ π‘ =1

=32

𝐡 = �1

(𝑠 βˆ’ 1)�𝑠= 1

3

= βˆ’32

Hence

19𝑠2 βˆ’ 12𝑠 + 3

=19

βŽ›βŽœβŽœβŽœβŽœβŽœβŽ32

1𝑠 βˆ’ 1

βˆ’32

1𝑠 βˆ’ 1

3

⎞⎟⎟⎟⎟⎟⎠ (1)

Using

π‘’π‘Žπ‘‘ ⟺1

𝑠 βˆ’ π‘ŽThen (1) becomes

19𝑠2 βˆ’ 12𝑠 + 3

⟺19 �

32𝑒𝑑 βˆ’

32𝑒13 𝑑�

=16𝑒𝑑 βˆ’

16𝑒13 𝑑

=16�𝑒𝑑 βˆ’ 𝑒

13 𝑑�

1.16 Section 6.3 problem 29

Find inverse Laplace transform of 𝐹 (𝑠) = 𝑒2π‘’βˆ’4𝑠

2π‘ βˆ’1

solution

𝐹 (𝑠) =𝑒2

2π‘’βˆ’4𝑠

𝑠 βˆ’ 12

Using

𝑒𝑐 (𝑑) 𝑓 (𝑑 βˆ’ 𝑐)⟺ π‘’βˆ’π‘π‘ πΉ (𝑠) (1)

Since1

𝑠 βˆ’ 12

βŸΊπ‘’12 𝑑

Then using (1)

π‘’βˆ’4𝑠1

𝑠 βˆ’ 12

βŸΊπ‘’4 (𝑑) 𝑒12 (π‘‘βˆ’4)

17

Hence𝑒2

2π‘’βˆ’4𝑠

𝑠 βˆ’ 12

βŸΊπ‘’2

2𝑒4 (𝑑) 𝑒

12 (π‘‘βˆ’4)

=12𝑒4 (𝑑) 𝑒

12 (π‘‘βˆ’4)+2

=12𝑒4 (𝑑) 𝑒

12 π‘‘βˆ’2+2

=12𝑒4 (𝑑) 𝑒

𝑑2

Therefore

𝑓 (𝑑) =12𝑒4 (𝑑) 𝑒

𝑑2

ps. Book answer is wrong. It gives

𝑓 (𝑑) =12𝑒4 οΏ½

𝑑2οΏ½ 𝑒

𝑑2

1.17 Section 6.3 problem 30

Find Laplace transform of 𝑓 (𝑑) =

⎧βŽͺβŽͺ⎨βŽͺβŽͺ⎩1 0 ≀ 𝑑 < 10 𝑑 β‰₯ 1

solution

Writing 𝑓 (𝑑) in terms of Heaviside step function gives

𝑓 (𝑑) = 𝑒0 (𝑑) βˆ’ 𝑒1 (𝑑)

Using

𝑒𝑐 (𝑑) ⟺ π‘’βˆ’π‘π‘ 1𝑠

Therefore

β„’{𝑒0 (𝑑)} = π‘’βˆ’0𝑠1𝑠=1𝑠

β„’ {𝑒1 (𝑑)} = π‘’βˆ’π‘ 1𝑠

Hence

β„’{𝑒0 (𝑑) βˆ’ 𝑒1 (𝑑)} =1π‘ βˆ’ π‘’βˆ’π‘ 

1𝑠

=1𝑠(1 βˆ’ π‘’βˆ’π‘ ) 𝑠 > 0

1.18 Section 6.3 problem 31

Find Laplace transform of 𝑓 (𝑑) =

⎧βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎨βŽͺβŽͺβŽͺβŽͺβŽͺβŽͺ⎩

1 0 ≀ 𝑑 < 10 1 ≀ 𝑑 < 21 2 ≀ 𝑑 < 30 𝑑 β‰₯ 3

solution

18

Writing 𝑓 (𝑑) in terms of Heaviside step function gives

𝑓 (𝑑) = 𝑒0 (𝑑) βˆ’ 𝑒1 (𝑑) + 𝑒2 (𝑑) βˆ’ 𝑒3 (𝑑)

Using

𝑒𝑐 (𝑑) ⟺ π‘’βˆ’π‘π‘ 1𝑠

But 𝑓 (𝑑) = 1 in this case. Hence 𝐹 (𝑠) = 1𝑠 . Therefore

𝑓 (𝑑)⟺1𝑠𝑒0𝑠 βˆ’

1π‘ π‘’βˆ’π‘  +

1π‘ π‘’βˆ’2𝑠 βˆ’

1π‘ π‘’βˆ’3𝑠

=1𝑠�1 βˆ’ π‘’βˆ’π‘  + π‘’βˆ’2𝑠 βˆ’ π‘’βˆ’3𝑠� 𝑠 > 0

1.19 Section 6.3 problem 32

Find Laplace transform of 𝑓 (𝑑) = 1 + βˆ‘2𝑛+1π‘˜=1 (βˆ’1)π‘˜ π‘’π‘˜ (𝑑)

solution

Using

𝑒𝑐 (𝑑) ⟺ π‘’βˆ’π‘π‘ 1𝑠

Therefore

β„’οΏ½1 +2𝑛+1οΏ½π‘˜=1

(βˆ’1)π‘˜ π‘’π‘˜ (𝑑)οΏ½ = β„’{1} +β„’οΏ½2𝑛+1οΏ½π‘˜=1

(βˆ’1)π‘˜ π‘’π‘˜ (𝑑)οΏ½

=1𝑠+

2𝑛+1οΏ½π‘˜=1

(βˆ’1)π‘˜1π‘ π‘’βˆ’π‘˜π‘ 

=2𝑛+1οΏ½π‘˜=0

(βˆ’1)π‘˜1π‘ π‘’βˆ’π‘˜π‘ 

=1𝑠

2𝑛+1οΏ½π‘˜=0

(βˆ’π‘’βˆ’π‘ )π‘˜

Since |π‘’βˆ’π‘ | < 1 the sum converges. Using βˆ‘π‘0 π‘Žπ‘› = οΏ½

1βˆ’π‘Ÿπ‘+1

1βˆ’π‘ŸοΏ½. Where |π‘Ÿ| < 1. So the answer is

β„’οΏ½1 +2𝑛+1οΏ½π‘˜=1

(βˆ’1)π‘˜ π‘’π‘˜ (𝑑)οΏ½ =1𝑠

βŽ›βŽœβŽœβŽœβŽ1 βˆ’ (βˆ’π‘’βˆ’π‘ )2𝑛+2

1 βˆ’ (βˆ’π‘’βˆ’π‘ )

⎞⎟⎟⎟⎠

=1𝑠

βŽ›βŽœβŽœβŽœβŽœβŽ1 βˆ’ (βˆ’π‘’)βˆ’(2𝑛+2)𝑠

1 + π‘’βˆ’π‘ 

⎞⎟⎟⎟⎟⎠

Since 2𝑛 + 2 is even then

β„’οΏ½1 +2𝑛+1οΏ½π‘˜=1

(βˆ’1)π‘˜ π‘’π‘˜ (𝑑)οΏ½ =1𝑠 οΏ½1 + π‘’βˆ’(2𝑛+2)𝑠

1 + π‘’βˆ’π‘  οΏ½ 𝑠 > 0

1.20 Section 6.3 problem 33

Find Laplace transform of 𝑓 (𝑑) = 1 + βˆ‘βˆžπ‘˜=1 (βˆ’1)

π‘˜ π‘’π‘˜ (𝑑)

solution

19

Using

𝑒𝑐 (𝑑) ⟺ π‘’βˆ’π‘π‘ 1𝑠

Therefore

β„’οΏ½1 +βˆžοΏ½π‘˜=1

(βˆ’1)π‘˜ π‘’π‘˜ (𝑑)οΏ½ = β„’{1} +β„’οΏ½βˆžοΏ½π‘˜=1

(βˆ’1)π‘˜ π‘’π‘˜ (𝑑)οΏ½

=1𝑠+

βˆžοΏ½π‘˜=1

(βˆ’1)π‘˜1π‘ π‘’βˆ’π‘˜π‘ 

=1𝑠+1𝑠

βˆžοΏ½π‘˜=1

(βˆ’1)π‘˜ π‘’βˆ’π‘˜π‘ 

=1𝑠+1𝑠

βˆžοΏ½π‘˜=1

(βˆ’π‘’βˆ’π‘ )π‘˜

ButβˆžοΏ½π‘˜=1

π‘Ÿπ‘˜ =π‘Ÿ

1 βˆ’ π‘Ÿ|π‘Ÿ| < 1

Since 𝑠 > 0 then|π‘’βˆ’π‘ | < 1. So the answer is1𝑠+1𝑠

βˆ’π‘’βˆ’π‘ 

1 βˆ’ (βˆ’π‘’βˆ’π‘ )=1π‘ βˆ’1𝑠

π‘’βˆ’π‘ 

1 + π‘’βˆ’π‘ 

=1 + π‘’βˆ’π‘  βˆ’ π‘’βˆ’π‘ 

𝑠 (1 + π‘’βˆ’π‘ )

=1

𝑠 (1 + π‘’βˆ’π‘ )𝑠 > 0

1.21 Section 6.4 problem 21

August 7, 2012 21:04 c06 Sheet number 34 Page number 342 cyan black

342 Chapter 6. The Laplace Transform

Resonance and Beats. In Section 3.8 we observed that an undamped harmonic oscillator(such as a spring–mass system) with a sinusoidal forcing term experiences resonance if thefrequency of the forcing term is the same as the natural frequency. If the forcing frequencyis slightly different from thenatural frequency,then the systemexhibits a beat. InProblems19 through 23 we explore the effect of some nonsinusoidal periodic forcing functions.

19. Consider the initial value problem

yβ€²β€² + y = f (t), y(0) = 0, yβ€²(0) = 0,where

f (t) = u0(t) + 2nβˆ‘

k=1(βˆ’1)kukΟ€(t).

(a) Draw the graph of f (t) on an interval such as 0 ≀ t ≀ 6Ο€.(b) Find the solution of the initial value problem.(c) Let n = 15 and plot the graph of the solution for 0 ≀ t ≀ 60. Describe the solutionand explain why it behaves as it does.(d) Investigate how the solution changes as n increases.What happens as n β†’ ∞?

20. Consider the initial value problem

yβ€²β€² + 0.1yβ€² + y = f (t), y(0) = 0, yβ€²(0) = 0,where f (t) is the same as in Problem 19.(a) Plot the graph of the solution. Use a large enough value of n and a long enought-interval so that the transient part of the solution has become negligible and the steadystate is clearly shown.(b) Estimate the amplitude and frequency of the steady state part of the solution.(c) Compare the results of part (b) with those from Section 3.8 for a sinusoidally forcedoscillator.

21. Consider the initial value problem

yβ€²β€² + y = g(t), y(0) = 0, yβ€²(0) = 0,where

g(t) = u0(t) +nβˆ‘

k=1(βˆ’1)kukΟ€(t).

(a) Draw the graph of g(t) on an interval such as 0 ≀ t ≀ 6Ο€. Compare the graph withthat of f (t) in Problem 19(a).(b) Find the solution of the initial value problem.(c) Let n = 15 and plot the graph of the solution for 0 ≀ t ≀ 60. Describe the solutionand explain why it behaves as it does. Compare it with the solution of Problem 19.(d) Investigate how the solution changes as n increases.What happens as n β†’ ∞?

22. Consider the initial value problem

yβ€²β€² + 0.1yβ€² + y = g(t), y(0) = 0, yβ€²(0) = 0,where g(t) is the same as in Problem 21.(a) Plot the graph of the solution. Use a large enough value of n and a long enough t-interval so that the transient part of the solution has become negligible and the steadystate is clearly shown.(b) Estimate the amplitude and frequency of the steady state part of the solution.

1.21.1 Part (a)

A plot of part (a) is the following

20

Ο€ 2 Ο€ 3 Ο€ 4 Ο€ 5 Ο€ 6 Ο€

0.2

0.4

0.6

0.8

1.0

6.4 (21) part (a) plot

And a plot of part(a) for problem 19 is the following

Ο€ 2 Ο€ 3 Ο€ 4 Ο€ 5 Ο€ 6 Ο€

-1.0

-0.5

0.5

1.0

6.4 (19) part (a) plot

We see the eοΏ½ect of having a 2 inside the sum. It extends the step 𝑒𝑐 (𝑑) function to negative side.

1.21.2 Part (b)

The easy way to do this, is to solve for each input term separately, and then add all the solutions,since this is a linear ODE. Once we solve for the first 2-3 terms, we will see the pattern to use forthe overall solution. Since the input 𝑔 (𝑑) is 𝑒0 (𝑑) + βˆ‘

βˆžπ‘˜=1 (βˆ’1)

π‘˜ π‘’π‘˜πœ‹ (𝑑), we will first first the response to𝑒0 (𝑑) , then for βˆ’π‘’πœ‹ (𝑑) then for +𝑒2πœ‹ (𝑑), and so on, and add them.

When the input is 𝑒0 (𝑑), then its Laplace transform is 1𝑠 , Hence, taking Laplace transform of the

ODE gives (where now π‘Œ (𝑠) = ℒ�𝑦 (𝑑)οΏ½)

�𝑠2π‘Œ (𝑠) βˆ’ 𝑠𝑦 (0) + 𝑦′ (0)οΏ½ + π‘Œ (𝑠) =1𝑠

Applying initial conditions

𝑠2π‘Œ (𝑠) + π‘Œ (𝑠) =1𝑠

21

Solving for π‘Œ0 (𝑠) (called it π‘Œ0 (𝑠) since the input is 𝑒0 (𝑑))

π‘Œ0 (𝑠) =1

𝑠 �𝑠2 + 1οΏ½

=1π‘ βˆ’

𝑠𝑠2 + 1

Hence

𝑦0 (𝑑) = 1 βˆ’ cos 𝑑

We now do the next input, which is βˆ’π‘’πœ‹ (𝑑), which has Laplace transform of βˆ’ π‘’βˆ’πœ‹π‘ 

𝑠 , therefore, followingwhat we did above, we obtain now

π‘Œπœ‹ (𝑠) =βˆ’π‘’βˆ’πœ‹π‘ 

𝑠 �𝑠2 + 1οΏ½

= βˆ’π‘’βˆ’πœ‹π‘  οΏ½1π‘ βˆ’

𝑠𝑠2 + 1οΏ½

The eοΏ½ect of π‘’βˆ’πœ‹π‘  is to cause delay in time. Hence the the inverse Laplace transform of the above isthe same as 𝑦0 (𝑑) but with delay

π‘¦πœ‹ (𝑑) = βˆ’π‘’πœ‹ (𝑑) (1 βˆ’ cos (𝑑 βˆ’ πœ‹))

Similarly, when the input is +𝑒2πœ‹ (𝑑), which which has Laplace transform of π‘’βˆ’2πœ‹π‘ 

𝑠 , therefore, followingwhat we did above, we obtain now

π‘Œπœ‹ (𝑠) =π‘’βˆ’2πœ‹π‘ 

𝑠 �𝑠2 + 1οΏ½

= π‘’βˆ’2πœ‹π‘  οΏ½1π‘ βˆ’

𝑠𝑠2 + 1οΏ½

The eοΏ½ect of π‘’βˆ’2πœ‹π‘  is to cause delay in time. Hence the the inverse Laplace transform of the above isthe same as 𝑦0 (𝑑) but with now with delay of 2πœ‹, therefore

𝑦2πœ‹ (𝑑) = +𝑒2πœ‹ (𝑑) (1 βˆ’ cos (𝑑 βˆ’ 2πœ‹))

And so on. We see that if we add all the responses, we obtain

𝑦 (𝑑) = 𝑦0 (𝑑) + π‘¦πœ‹ (𝑑) + 𝑦2πœ‹ (𝑑) +β‹―= (1 βˆ’ cos 𝑑) βˆ’ π‘’πœ‹ (𝑑) (1 βˆ’ cos (𝑑 βˆ’ πœ‹)) + 𝑒2πœ‹ (𝑑) (1 βˆ’ cos (𝑑 βˆ’ 2πœ‹)) βˆ’β‹―

Or

𝑦 (𝑑) = (1 βˆ’ cos 𝑑) +π‘›οΏ½π‘˜=1

(βˆ’1)π‘˜ π‘’π‘˜πœ‹ (𝑑) (1 βˆ’ cos (𝑑 βˆ’ π‘˜πœ‹)) (1)

1.21.3 Part (c)

This is a plot of (1) for 𝑛 = 15

22

10 20 30 40 50 60t

-15

-10

-5

5

10

15

y(t)6.4 (21) part (c) plot

We see the solution growing rapidly, they settling down after about 𝑑 = 50 to sinusoidal wave atamplitude of about Β±15. This shows the system reached steady state at around 𝑑 = 50.

To compare it with problem 19 solution, I used the solution for 19 given in the book, and plottedboth solution on top of each others. Also for up to 𝑑 = 60. Here is the result

problem 21

problem 19

2 Ο€ 4 Ο€ 6 Ο€ 8 Ο€ 10 Ο€ 12 Ο€ 14 Ο€ 16 Ο€ 18 Ο€t

-30

-20

-10

10

20

30

y(t)

We see that problem 19 output follows the same pattern (since same frequency is used), but withdouble the amplitude. This is due to the 2 factor used in problem 19 compared to this problem.

1.21.4 Part(d)

At first, I tried it with 𝑛 = 50, 150, 250, 350, 450, 550. I can not see any noticeable change in the plot.Here is the result.

23

10 20 30 40 50 60

-20

-10

10

20

n = 50

10 20 30 40 50 60

-20

-10

10

20

n = 150

10 20 30 40 50 60

-20

-10

10

20

n = 250

10 20 30 40 50 60

-20

-10

10

20

n = 350

10 20 30 40 50 60

-20

-10

10

20

n = 450

10 20 30 40 50 60

-20

-10

10

20

n = 550

Even at 𝑛 = 2000 there was no change to be noticed.

10 20 30 40 50 60

-20

-10

10

20n = 2000

This shows additional input in the form of shifted unit steps, do not change the steady state solution.