HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“...

23
HW 8, Math 319, Fall 2016 Nasser M. Abbasi (Discussion section 44272, Th 4:35PM-5:25 PM) December 30, 2019 Contents 1 HW 8 2 1.1 Section 6.1 problem 7 ..................................... 2 1.2 Section 6.1 problem 8 ..................................... 2 1.3 Section 6.1 problem 9 ..................................... 3 1.4 Section 6.1 problem 10 ..................................... 3 1.5 Section 6.2 problem 17 ..................................... 3 1.6 Section 6.2 problem 18 ..................................... 5 1.7 Section 6.2 problem 19 ..................................... 6 1.8 Section 6.2 problem 20 ..................................... 7 1.9 Section 6.2 problem 21 ..................................... 8 1.10 Section 6.2 problem 22 ..................................... 10 1.11 Section 6.2 problem 23 ..................................... 11 1.12 Section 6.3 problem 25 ..................................... 12 1.12.1 Part (a) ......................................... 13 1.12.2 Part (b) ......................................... 13 1.12.3 Part (c) ......................................... 14 1.13 Section 6.3 problem 26 ..................................... 14 1.14 Section 6.3 problem 27 ..................................... 14 1.15 Section 6.3 problem 28 ..................................... 15 1.16 Section 6.3 problem 29 ..................................... 16 1.17 Section 6.3 problem 30 ..................................... 17 1.18 Section 6.3 problem 31 ..................................... 17 1.19 Section 6.3 problem 32 ..................................... 18 1.20 Section 6.3 problem 33 ..................................... 18 1.21 Section 6.4 problem 21 ..................................... 19 1.21.1 Part (a) ......................................... 19 1.21.2 Part (b) ......................................... 20 1.21.3 Part (c) ......................................... 21 1.21.4 Part(d) ......................................... 22 1

Transcript of HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“...

Page 1: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

HW 8, Math 319, Fall 2016

Nasser M. Abbasi (Discussion section 44272, Th 4:35PM-5:25 PM)

December 30, 2019

Contents

1 HW 8 21.1 Section 6.1 problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Section 6.1 problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Section 6.1 problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.4 Section 6.1 problem 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.5 Section 6.2 problem 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.6 Section 6.2 problem 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.7 Section 6.2 problem 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.8 Section 6.2 problem 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.9 Section 6.2 problem 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81.10 Section 6.2 problem 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.11 Section 6.2 problem 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.12 Section 6.3 problem 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.12.1 Part (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.12.2 Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.12.3 Part (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.13 Section 6.3 problem 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.14 Section 6.3 problem 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.15 Section 6.3 problem 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.16 Section 6.3 problem 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161.17 Section 6.3 problem 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171.18 Section 6.3 problem 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171.19 Section 6.3 problem 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181.20 Section 6.3 problem 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181.21 Section 6.4 problem 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.21.1 Part (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191.21.2 Part (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201.21.3 Part (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211.21.4 Part(d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1

Page 2: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

2

1 HW 8

1.1 Section 6.1 problem 7

Find Laplace Transform of ๐‘“ (๐‘ก) = cosh (๐‘๐‘ก)

solution Since cosh (๐‘๐‘ก) = ๐‘’๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก

2 then

โ„’ cosh (๐‘๐‘ก) = 12โ„’๏ฟฝ๐‘’๐‘๐‘ก + ๐‘’โˆ’๐‘๐‘ก๏ฟฝ

=12๏ฟฝโ„’ ๐‘’๐‘๐‘ก +โ„’๐‘’โˆ’๐‘๐‘ก๏ฟฝ

But

โ„’๐‘’๐‘๐‘ก =1

๐‘  โˆ’ ๐‘

For ๐‘  > ๐‘ and

โ„’๐‘’๐‘๐‘ก =1

๐‘  โˆ’ ๐‘

For ๐‘  < ๐‘. Hence

โ„’ cosh (๐‘๐‘ก) = 12 ๏ฟฝ

1๐‘  โˆ’ ๐‘

+1

๐‘  + ๐‘๏ฟฝ

=๐‘ 2

๐‘ 2 โˆ’ ๐‘2

For ๐‘  > |๐‘|

1.2 Section 6.1 problem 8

Find Laplace Transform of ๐‘“ (๐‘ก) = sinh (๐‘๐‘ก)

solution Since sinh (๐‘๐‘ก) = ๐‘’๐‘๐‘กโˆ’๐‘’โˆ’๐‘๐‘ก

2 then

โ„’ sinh (๐‘๐‘ก) = 12โ„’๏ฟฝ๐‘’๐‘๐‘ก โˆ’ ๐‘’โˆ’๐‘๐‘ก๏ฟฝ

=12๏ฟฝโ„’ ๐‘’๐‘๐‘ก โˆ’โ„’ ๐‘’โˆ’๐‘๐‘ก๏ฟฝ

But, as we found in the last problem

โ„’๐‘’๐‘๐‘ก =1

๐‘  โˆ’ ๐‘๐‘  > ๐‘

And

โ„’๐‘’โˆ’๐‘๐‘ก =1

๐‘  + ๐‘๐‘  < ๐‘

Page 3: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

3

Therefore

โ„’ sinh (๐‘๐‘ก) = 12 ๏ฟฝ

1๐‘  โˆ’ ๐‘

โˆ’1

๐‘  + ๐‘๏ฟฝ๐‘  > ๐‘; ๐‘  < ๐‘

=๐‘

๐‘ 2 โˆ’ ๐‘2๐‘  > |๐‘|

1.3 Section 6.1 problem 9

Find Laplace Transform of ๐‘“ (๐‘ก) = ๐‘’๐‘Ž๐‘ก cosh (๐‘๐‘ก)

solution Using the property that

๐‘’๐‘Ž๐‘ก๐‘“ (๐‘ก)โŸบ ๐น (๐‘  โˆ’ ๐‘Ž)

Where ๐‘“ (๐‘ก) = cosh (๐‘๐‘ก) now. We already found above that cosh (๐‘๐‘ก)โŸบ ๐‘ ๐‘ 2โˆ’๐‘2 , for ๐‘  > |๐‘|. In other words,

๐น (๐‘ ) = ๐‘ ๐‘ 2โˆ’๐‘2 , therefore

๐‘’๐‘Ž๐‘ก cosh (๐‘๐‘ก)โŸบ(๐‘  โˆ’ ๐‘Ž)

(๐‘  โˆ’ ๐‘Ž)2 โˆ’ ๐‘2๐‘  โˆ’ ๐‘Ž > |๐‘|

1.4 Section 6.1 problem 10

Find Laplace Transform of ๐‘“ (๐‘ก) = ๐‘’๐‘Ž๐‘ก sinh (๐‘๐‘ก)

solution Using the property that

๐‘’๐‘Ž๐‘ก๐‘“ (๐‘ก)โŸบ ๐น (๐‘  โˆ’ ๐‘Ž)

Where ๐‘“ (๐‘ก) = sinh (๐‘๐‘ก) now. We already found above that sinh (๐‘๐‘ก)โŸบ ๐‘๐‘ 2โˆ’๐‘2 , for ๐‘  > |๐‘|. In other words,

๐น (๐‘ ) = ๐‘๐‘ 2โˆ’๐‘2 , therefore

๐‘’๐‘Ž๐‘ก sinh (๐‘๐‘ก)โŸบ ๐‘(๐‘  โˆ’ ๐‘Ž)2 โˆ’ ๐‘2

๐‘  โˆ’ ๐‘Ž > |๐‘|

1.5 Section 6.2 problem 17

Use Laplace transform to solve ๐‘ฆ(4) โˆ’4๐‘ฆโ€ฒโ€ฒโ€ฒ +6๐‘ฆโ€ฒโ€ฒ โˆ’4๐‘ฆโ€ฒ +๐‘ฆ = 0 for ๐‘ฆ (0) = 0, ๐‘ฆโ€ฒ (0) = 1, ๐‘ฆโ€ฒโ€ฒ (0) = 0, ๐‘ฆโ€ฒโ€ฒโ€ฒ (0) = 1

Solution Taking Laplace transform of the ODE gives

โ„’๏ฟฝ๐‘ฆ(4)๏ฟฝ โˆ’ 4โ„’๏ฟฝ๐‘ฆโ€ฒโ€ฒโ€ฒ๏ฟฝ + 6โ„’๏ฟฝ๐‘ฆโ€ฒโ€ฒ๏ฟฝ โˆ’ 4โ„’๏ฟฝ๐‘ฆโ€ฒ๏ฟฝ +โ„’๏ฟฝ๐‘ฆ๏ฟฝ = 0 (1)

Let โ„’๏ฟฝ๐‘ฆ๏ฟฝ = ๐‘Œ (๐‘ ) then

โ„’๏ฟฝ๐‘ฆ(4)๏ฟฝ = ๐‘ 4๐‘Œ (๐‘ ) โˆ’ ๐‘ 3๐‘ฆ (0) โˆ’ ๐‘ 2๐‘ฆโ€ฒ (0) โˆ’ ๐‘ ๐‘ฆโ€ฒโ€ฒ (0) โˆ’ ๐‘ฆโ€ฒโ€ฒโ€ฒ (0)

= ๐‘ 4๐‘Œ (๐‘ ) โˆ’ ๐‘ 3 (0) โˆ’ ๐‘ 2 (1) โˆ’ ๐‘  (0) โˆ’ 1= ๐‘ 4๐‘Œ (๐‘ ) โˆ’ ๐‘ 2 โˆ’ 1

And

โ„’๏ฟฝ๐‘ฆโ€ฒโ€ฒโ€ฒ๏ฟฝ = ๐‘ 3๐‘Œ (๐‘ ) โˆ’ ๐‘ 2๐‘ฆ (0) โˆ’ ๐‘ ๐‘ฆโ€ฒ (0) โˆ’ ๐‘ฆโ€ฒโ€ฒ (0)

= ๐‘ 3๐‘Œ (๐‘ ) โˆ’ ๐‘ 2 (0) โˆ’ ๐‘  (1) โˆ’ 0= ๐‘ 3๐‘Œ (๐‘ ) โˆ’ ๐‘ 

Page 4: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

4

And

โ„’๏ฟฝ๐‘ฆโ€ฒโ€ฒ๏ฟฝ = ๐‘ 2๐‘Œ (๐‘ ) โˆ’ ๐‘ ๐‘ฆ (0) โˆ’ ๐‘ฆโ€ฒ (0)

= ๐‘ 2๐‘Œ (๐‘ ) โˆ’ ๐‘  (0) โˆ’ 1= ๐‘ 2๐‘Œ (๐‘ ) โˆ’ 1

And

โ„’๏ฟฝ๐‘ฆโ€ฒ๏ฟฝ = ๐‘ ๐‘Œ (๐‘ ) โˆ’ ๐‘ฆ (0)

= ๐‘ ๐‘Œ (๐‘ )

Hence (1) becomes

๏ฟฝ๐‘ 4๐‘Œ (๐‘ ) โˆ’ ๐‘ 2 โˆ’ 1๏ฟฝ โˆ’ 4 ๏ฟฝ๐‘ 3๐‘Œ (๐‘ ) โˆ’ ๐‘ ๏ฟฝ + 6 ๏ฟฝ๐‘ 2๐‘Œ (๐‘ ) โˆ’ 1๏ฟฝ โˆ’ 4 (๐‘ ๐‘Œ (๐‘ )) + ๐‘Œ (๐‘ ) = 0

๐‘Œ (๐‘ ) ๏ฟฝ๐‘ 4 โˆ’ 4๐‘ 3 + 6๐‘ 2 โˆ’ 4๐‘  + 1๏ฟฝ โˆ’ ๐‘ 2 โˆ’ 1 + 4๐‘  โˆ’ 6 = 0

Therefore

๐‘Œ (๐‘ ) =๐‘ 2 โˆ’ 4๐‘  + 7

๐‘ 4 โˆ’ 4๐‘ 3 + 6๐‘ 2 โˆ’ 4๐‘  + 1

=๐‘ 2 โˆ’ 4๐‘  + 7(๐‘  โˆ’ 1)4

=๐‘ 2

(๐‘  โˆ’ 1)4โˆ’

4๐‘ (๐‘  โˆ’ 1)4

+7

(๐‘  โˆ’ 1)4(2)

But

๐‘ 2

(๐‘  โˆ’ 1)4=(๐‘  โˆ’ 1)2 โˆ’ 1 + 2๐‘ 

(๐‘  โˆ’ 1)4

=(๐‘  โˆ’ 1)2

(๐‘  โˆ’ 1)4โˆ’

1(๐‘  โˆ’ 1)4

+ 2(๐‘  โˆ’ 1) + 1(๐‘  โˆ’ 1)4

=1

(๐‘  โˆ’ 1)2โˆ’

1(๐‘  โˆ’ 1)4

+ 2(๐‘  โˆ’ 1)(๐‘  โˆ’ 1)4

+ 21

(๐‘  โˆ’ 1)4

=1

(๐‘  โˆ’ 1)2โˆ’

1(๐‘  โˆ’ 1)4

+ 21

(๐‘  โˆ’ 1)3+ 2

1(๐‘  โˆ’ 1)4

=1

(๐‘  โˆ’ 1)2+

2(๐‘  โˆ’ 1)3

+1

(๐‘  โˆ’ 1)4

And4๐‘ 

(๐‘  โˆ’ 1)4= 4

(๐‘  โˆ’ 1) + 1(๐‘  โˆ’ 1)4

= 4(๐‘  โˆ’ 1)(๐‘  โˆ’ 1)4

+ 41

(๐‘  โˆ’ 1)4

=4

(๐‘  โˆ’ 1)3+

4(๐‘  โˆ’ 1)4

Therefore (2) becomes

๐‘Œ (๐‘ ) = ๏ฟฝ1

(๐‘  โˆ’ 1)2+

2(๐‘  โˆ’ 1)3

+1

(๐‘  โˆ’ 1)4๏ฟฝ โˆ’ ๏ฟฝ

4(๐‘  โˆ’ 1)3

+4

(๐‘  โˆ’ 1)4๏ฟฝ +

7(๐‘  โˆ’ 1)4

=1

(๐‘  โˆ’ 1)2โˆ’

2(๐‘  โˆ’ 1)3

+4

(๐‘  โˆ’ 1)4(3)

Page 5: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

5

Now using property the shift property of ๐น (๐‘ ) together with1๐‘ 2โŸบ ๐‘ก

1๐‘ 3โŸบ

๐‘ก2

21๐‘ 4โŸบ

๐‘ก3

6Therefore

1(๐‘  โˆ’ 1)2

โŸบ๐‘’๐‘ก๐‘ก

1(๐‘  โˆ’ 1)3

โŸบ๐‘’๐‘ก๐‘ก2

21

(๐‘  โˆ’ 1)4โŸบ๐‘’๐‘ก

๐‘ก3

6

And (3) becomes

1(๐‘  โˆ’ 1)2

โˆ’2

(๐‘  โˆ’ 1)3+

4(๐‘  โˆ’ 1)4

โŸบ๐‘’๐‘ก๐‘ก โˆ’ 2 ๏ฟฝ๐‘’๐‘ก๐‘ก2

2 ๏ฟฝ+ 4 ๏ฟฝ๐‘’๐‘ก

๐‘ก3

6 ๏ฟฝ

= ๐‘’๐‘ก๐‘ก โˆ’ ๐‘’๐‘ก๐‘ก2 +23๐‘’๐‘ก๐‘ก3

Hence

๐‘ฆ (๐‘ก) = ๐‘’๐‘ก ๏ฟฝ๐‘ก โˆ’ ๐‘ก2 +23๐‘ก3๏ฟฝ

1.6 Section 6.2 problem 18

Use Laplace transform to solve ๐‘ฆ(4) โˆ’ ๐‘ฆ = 0 for ๐‘ฆ (0) = 1, ๐‘ฆโ€ฒ (0) = 0, ๐‘ฆโ€ฒโ€ฒ (0) = 1, ๐‘ฆโ€ฒโ€ฒโ€ฒ (0) = 0

Solution Taking Laplace transform of the ODE gives

โ„’๏ฟฝ๐‘ฆ(4)๏ฟฝ โˆ’โ„’๏ฟฝ๐‘ฆ๏ฟฝ = 0 (1)

Let โ„’๏ฟฝ๐‘ฆ๏ฟฝ = ๐‘Œ (๐‘ ) then

โ„’๏ฟฝ๐‘ฆ(4)๏ฟฝ = ๐‘ 4๐‘Œ (๐‘ ) โˆ’ ๐‘ 3๐‘ฆ (0) โˆ’ ๐‘ 2๐‘ฆโ€ฒ (0) โˆ’ ๐‘ ๐‘ฆโ€ฒโ€ฒ (0) โˆ’ ๐‘ฆโ€ฒโ€ฒโ€ฒ (0)

= ๐‘ 4๐‘Œ (๐‘ ) โˆ’ ๐‘ 3 (1) โˆ’ ๐‘ 2 (0) โˆ’ ๐‘  (1) โˆ’ 0= ๐‘ 4๐‘Œ (๐‘ ) โˆ’ ๐‘ 3 โˆ’ ๐‘ 

Hence (1) becomes

๐‘ 4๐‘Œ (๐‘ ) โˆ’ ๐‘ 3 โˆ’ ๐‘  โˆ’ ๐‘Œ (๐‘ ) = 0

Page 6: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

6

Solving for ๐‘Œ (๐‘ ) gives

๐‘Œ (๐‘ ) =๐‘ 3 + ๐‘ ๐‘ 4 โˆ’ 1

=๐‘  ๏ฟฝ๐‘ 2 + 1๏ฟฝ๐‘ 4 โˆ’ 1

=๐‘  ๏ฟฝ๐‘ 2 + 1๏ฟฝ

๏ฟฝ๐‘ 2 โˆ’ 1๏ฟฝ ๏ฟฝ๐‘ 2 + 1๏ฟฝ

=๐‘ 

๐‘ 2 โˆ’ 1But, Hence above becomes, where ๐‘Ž = 1

๐‘ ๐‘ 2 โˆ’ 1

โŸบ cosh (๐‘ก)

Hence

๐‘ฆ (๐‘ก) = cosh (๐‘Ž๐‘ก)

1.7 Section 6.2 problem 19

Use Laplace transform to solve ๐‘ฆ(4) โˆ’ 4๐‘ฆ = 0 for ๐‘ฆ (0) = 1, ๐‘ฆโ€ฒ (0) = 0, ๐‘ฆโ€ฒโ€ฒ (0) = โˆ’2, ๐‘ฆโ€ฒโ€ฒโ€ฒ (0) = 0

Solution Taking Laplace transform of the ODE gives

โ„’๏ฟฝ๐‘ฆ(4)๏ฟฝ โˆ’ 4โ„’๏ฟฝ๐‘ฆ๏ฟฝ = 0 (1)

Let โ„’๏ฟฝ๐‘ฆ๏ฟฝ = ๐‘Œ (๐‘ ) then

โ„’๏ฟฝ๐‘ฆ(4)๏ฟฝ = ๐‘ 4๐‘Œ (๐‘ ) โˆ’ ๐‘ 3๐‘ฆ (0) โˆ’ ๐‘ 2๐‘ฆโ€ฒ (0) โˆ’ ๐‘ ๐‘ฆโ€ฒโ€ฒ (0) โˆ’ ๐‘ฆโ€ฒโ€ฒโ€ฒ (0)

= ๐‘ 4๐‘Œ (๐‘ ) โˆ’ ๐‘ 3 (1) โˆ’ ๐‘ 2 (0) โˆ’ ๐‘  (โˆ’2) โˆ’ 0= ๐‘ 4๐‘Œ (๐‘ ) โˆ’ ๐‘ 3 + 2๐‘ 

Hence (1) becomes

๐‘ 4๐‘Œ (๐‘ ) โˆ’ ๐‘ 3 + 2๐‘  โˆ’ 4๐‘Œ (๐‘ ) = 0

Solving for ๐‘Œ (๐‘ ) gives

๐‘Œ (๐‘ ) =๐‘ 3 โˆ’ 2๐‘ ๐‘ 4 โˆ’ 4

=๐‘ 3 โˆ’ 2๐‘ 

๏ฟฝ๐‘ 2 โˆ’ 2๏ฟฝ ๏ฟฝ๐‘ 2 + 2๏ฟฝ

=๐‘  ๏ฟฝ๐‘ 2 โˆ’ 2๏ฟฝ

๏ฟฝ๐‘ 2 โˆ’ 2๏ฟฝ ๏ฟฝ๐‘ 2 + 2๏ฟฝ

=๐‘ 

๏ฟฝ๐‘ 2 + 2๏ฟฝ

Using cos (๐‘Ž๐‘ก)โŸบ ๐‘ ๐‘ 2+๐‘Ž2 , the above becomes, where ๐‘Ž = โˆš2

๐‘ ๏ฟฝ๐‘ 2 + 2๏ฟฝ

โŸบ cos ๏ฟฝโˆš2๐‘ก๏ฟฝ

Page 7: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

7

Hence

๐‘ฆ (๐‘ก) = cos ๏ฟฝโˆš2๐‘ก๏ฟฝ

1.8 Section 6.2 problem 20

Use Laplace transform to solve ๐‘ฆโ€ฒโ€ฒ + ๐œ”2๐‘ฆ = cos 2๐‘ก; ๐œ”2 โ‰  4; ๐‘ฆ (0) = 1, ๐‘ฆโ€ฒ (0) = 0

Solution Let ๐‘Œ (๐‘ ) = โ„’๏ฟฝ๐‘ฆ (๐‘ก)๏ฟฝ. Taking Laplace transform of the ODE, and using cos (๐‘Ž๐‘ก)โŸบ ๐‘ ๐‘ 2+๐‘Ž2 gives

๐‘ 2๐‘Œ (๐‘ ) โˆ’ ๐‘ ๐‘ฆ (0) โˆ’ ๐‘ฆโ€ฒ (0) + ๐œ”2๐‘Œ (๐‘ ) =๐‘ 

๐‘ 2 + 4(1)

Applying initial conditions

๐‘ 2๐‘Œ (๐‘ ) โˆ’ ๐‘  + ๐œ”2๐‘Œ (๐‘ ) =๐‘ 

๐‘ 2 + 4Solving for ๐‘Œ (๐‘ )

๐‘Œ (๐‘ ) ๏ฟฝ๐‘ 2 + ๐œ”2๏ฟฝ โˆ’ ๐‘  =๐‘ 

๐‘ 2 + 4๐‘Œ (๐‘ ) =

๐‘ ๏ฟฝ๐‘ 2 + 4๏ฟฝ ๏ฟฝ๐‘ 2 + ๐œ”2๏ฟฝ

+๐‘ 

๏ฟฝ๐‘ 2 + ๐œ”2๏ฟฝ(2)

But๐‘ 

๏ฟฝ๐‘ 2 + 4๏ฟฝ ๏ฟฝ๐‘ 2 + ๐œ”2๏ฟฝ=๐ด๐‘  + ๐ต๏ฟฝ๐‘ 2 + 4๏ฟฝ

+๐ถ๐‘  + ๐ท๏ฟฝ๐‘ 2 + ๐œ”2๏ฟฝ

๐‘  = (๐ด๐‘  + ๐ต) ๏ฟฝ๐‘ 2 + ๐œ”2๏ฟฝ + (๐ถ๐‘  + ๐ท) ๏ฟฝ๐‘ 2 + 4๏ฟฝ

๐‘  = 4๐ท + ๐ด๐‘ 3 + ๐ต๐‘ 2 + ๐ถ๐‘ 3 + ๐ต๐œ”2 + ๐‘ 2๐ท + 4๐ถ๐‘  + ๐ด๐‘ ๐œ”2

๐‘  = ๏ฟฝ4๐ท + ๐ต๐œ”2๏ฟฝ + ๐‘  ๏ฟฝ4๐ถ + ๐ด๐œ”2๏ฟฝ + ๐‘ 2 (๐ต + ๐ท) + ๐‘ 3 (๐ด + ๐ถ)

Hence

4๐ท + ๐ต๐œ”2 = 04๐ถ + ๐ด๐œ”2 = 1

๐ต + ๐ท = 0๐ด + ๐ถ = 0

Equation (2,4) gives ๐ด = 1๐œ”2โˆ’4 , ๐ถ =

14โˆ’๐œ”2 and (1,3) gives ๐ต = 0,๐ท = 0. Hence

๐‘ ๏ฟฝ๐‘ 2 + 4๏ฟฝ ๏ฟฝ๐‘ 2 + ๐œ”2๏ฟฝ

= ๏ฟฝ1

๐œ”2 โˆ’ 4๏ฟฝ๐‘ 

๏ฟฝ๐‘ 2 + 4๏ฟฝ+ ๏ฟฝ

14 โˆ’ ๐œ”2 ๏ฟฝ

๐‘ ๏ฟฝ๐‘ 2 + ๐œ”2๏ฟฝ

Therefore (2) becomes

๐‘Œ (๐‘ ) = ๏ฟฝ1

๐œ”2 โˆ’ 4๏ฟฝ๐‘ 

๏ฟฝ๐‘ 2 + 4๏ฟฝ+ ๏ฟฝ

14 โˆ’ ๐œ”2 ๏ฟฝ

๐‘ ๏ฟฝ๐‘ 2 + ๐œ”2๏ฟฝ

+๐‘ 

๏ฟฝ๐‘ 2 + ๐œ”2๏ฟฝ

= ๏ฟฝ1

๐œ”2 โˆ’ 4๏ฟฝ๐‘ 

๏ฟฝ๐‘ 2 + 4๏ฟฝ+ ๏ฟฝ

5 โˆ’ ๐œ”2

4 โˆ’ ๐œ”2 ๏ฟฝ๐‘ 

๏ฟฝ๐‘ 2 + ๐œ”2๏ฟฝ

Page 8: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

8

Using cos (๐‘Ž๐‘ก)โŸบ ๐‘ ๐‘ 2+๐‘Ž2 , the above becomes

๏ฟฝ1

๐œ”2 โˆ’ 4๏ฟฝ๐‘ 

๏ฟฝ๐‘ 2 + 4๏ฟฝ+ ๏ฟฝ

5 โˆ’ ๐œ”2

4 โˆ’ ๐œ”2 ๏ฟฝ๐‘ 

๏ฟฝ๐‘ 2 + ๐œ”2๏ฟฝโŸบ ๏ฟฝ

1๐œ”2 โˆ’ 4๏ฟฝ

cos (2๐‘ก) + ๏ฟฝ5 โˆ’ ๐œ”2

4 โˆ’ ๐œ”2 ๏ฟฝ cos (๐œ”๐‘ก)

= ๏ฟฝ1

๐œ”2 โˆ’ 4๏ฟฝcos (2๐‘ก) + ๏ฟฝ

๐œ”2 โˆ’ 5๐œ”2 โˆ’ 4๏ฟฝ

cos (๐œ”๐‘ก)

Hence

๐‘ฆ (๐‘ก) = ๏ฟฝ1

๐œ”2 โˆ’ 4๏ฟฝcos (2๐‘ก) + ๏ฟฝ

๐œ”2 โˆ’ 5๐œ”2 โˆ’ 4๏ฟฝ

cos (๐œ”๐‘ก)

=๏ฟฝ๐œ”2 โˆ’ 5๏ฟฝ cos (๐œ”๐‘ก) + cos (2๐‘ก)

๐œ”2 โˆ’ 4

1.9 Section 6.2 problem 21

Use Laplace transform to solve ๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฆโ€ฒ + 2๐‘ฆ = cos ๐‘ก; ๐‘ฆ (0) = 1, ๐‘ฆโ€ฒ (0) = 0

Solution Let ๐‘Œ (๐‘ ) = โ„’๏ฟฝ๐‘ฆ (๐‘ก)๏ฟฝ. Taking Laplace transform of the ODE, and using cos (๐‘Ž๐‘ก)โŸบ ๐‘ ๐‘ 2+๐‘Ž2 gives

๏ฟฝ๐‘ 2๐‘Œ (๐‘ ) โˆ’ ๐‘ ๐‘ฆ (0) โˆ’ ๐‘ฆโ€ฒ (0)๏ฟฝ โˆ’ 2 ๏ฟฝ๐‘ ๐‘Œ (๐‘ ) โˆ’ ๐‘ฆ (0)๏ฟฝ + 2๐‘Œ (๐‘ ) =๐‘ 

๐‘ 2 + 1(1)

Applying initial conditions

๐‘ 2๐‘Œ (๐‘ ) โˆ’ ๐‘  โˆ’ 2 (๐‘ ๐‘Œ (๐‘ ) โˆ’ 1) + 2๐‘Œ (๐‘ ) =๐‘ 

๐‘ 2 + 1Solving for ๐‘Œ (๐‘ )

๐‘ 2๐‘Œ (๐‘ ) โˆ’ ๐‘  โˆ’ 2๐‘ ๐‘Œ (๐‘ ) + 2 + 2๐‘Œ (๐‘ ) =๐‘ 

๐‘ 2 + 1๐‘Œ (๐‘ ) ๏ฟฝ๐‘ 2 โˆ’ 2๐‘  + 2๏ฟฝ โˆ’ ๐‘  + 2 =

๐‘ ๐‘ 2 + 1

๐‘Œ (๐‘ ) =๐‘ 

๏ฟฝ๐‘ 2 + 1๏ฟฝ ๏ฟฝ๐‘ 2 โˆ’ 2๐‘  + 2๏ฟฝ+

๐‘ ๏ฟฝ๐‘ 2 โˆ’ 2๐‘  + 2๏ฟฝ

โˆ’2

๏ฟฝ๐‘ 2 โˆ’ 2๐‘  + 2๏ฟฝ(2)

But๐‘ 

๏ฟฝ๐‘ 2 + 1๏ฟฝ ๏ฟฝ๐‘ 2 โˆ’ 2๐‘  + 2๏ฟฝ=๐ด๐‘  + ๐ต๏ฟฝ๐‘ 2 + 1๏ฟฝ

+๐ถ๐‘  + ๐ท

๐‘ 2 โˆ’ 2๐‘  + 2

๐‘  = (๐ด๐‘  + ๐ต) ๏ฟฝ๐‘ 2 โˆ’ 2๐‘  + 2๏ฟฝ + (๐ถ๐‘  + ๐ท) ๏ฟฝ๐‘ 2 + 1๏ฟฝ

๐‘  = 2๐ต + ๐ท โˆ’ 2๐ด๐‘ 2 + ๐ด๐‘ 3 + ๐ต๐‘ 2 + ๐ถ๐‘ 3 + ๐‘ 2๐ท + 2๐ด๐‘  โˆ’ 2๐ต๐‘  + ๐ถ๐‘ ๐‘  = (2๐ต + ๐ท) + ๐‘  (2๐ด โˆ’ 2๐ต + ๐ถ) + ๐‘ 2 (โˆ’2๐ด + ๐ต + ๐ท) + ๐‘ 3 (๐ด + ๐ถ)

Hence

2๐ต + ๐ท = 02๐ด โˆ’ 2๐ต + ๐ถ = 1โˆ’2๐ด + ๐ต + ๐ท = 0

๐ด + ๐ถ = 0

Page 9: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

9

Solving gives ๐ด = 15 , ๐ต = โˆ’

25 , ๐ถ = โˆ’

15 , ๐ท = 4

5 , hence

๐‘ ๏ฟฝ๐‘ 2 + 1๏ฟฝ ๏ฟฝ๐‘ 2 โˆ’ 2๐‘  + 2๏ฟฝ

=15

๐‘  โˆ’ 2๏ฟฝ๐‘ 2 + 1๏ฟฝ

โˆ’15

๐‘  โˆ’ 4๐‘ 2 โˆ’ 2๐‘  + 2

=15

๐‘ ๐‘ 2 + 1

โˆ’25

1๐‘ 2 + 1

โˆ’15

๐‘ ๐‘ 2 โˆ’ 2๐‘  + 2

+45

1๐‘ 2 โˆ’ 2๐‘  + 2

(3)

Completing the squares for

๐‘ 2 โˆ’ 2๐‘  + 2 = ๐‘Ž (๐‘  + ๐‘)2 + ๐‘‘

= ๐‘Ž ๏ฟฝ๐‘ 2 + ๐‘2 + 2๐‘๐‘ ๏ฟฝ + ๐‘‘

= ๐‘Ž๐‘ 2 + ๐‘Ž๐‘2 + 2๐‘Ž๐‘๐‘  + ๐‘‘

Hence ๐‘Ž = 1, 2๐‘Ž๐‘ = โˆ’2, ๏ฟฝ๐‘Ž๐‘2 + ๐‘‘๏ฟฝ = 2, hence ๐‘ = โˆ’1, ๐‘‘ = 1, hence

๐‘ 2 โˆ’ 2๐‘  + 2 = (๐‘  โˆ’ 1)2 + 1

Hence (3) becomes๐‘ 

๏ฟฝ๐‘ 2 + 1๏ฟฝ ๏ฟฝ๐‘ 2 โˆ’ 2๐‘  + 2๏ฟฝ=15

๐‘ ๐‘ 2 + 1

โˆ’25

1๐‘ 2 + 1

โˆ’15

๐‘ (๐‘  โˆ’ 1)2 + 1

+45

1(๐‘  โˆ’ 1)2 + 1

=15

๐‘ ๐‘ 2 + 1

โˆ’25

1๐‘ 2 + 1

โˆ’15(๐‘  โˆ’ 1) + 1(๐‘  โˆ’ 1)2 + 1

+45

1(๐‘  โˆ’ 1)2 + 1

=15

๐‘ ๐‘ 2 + 1

โˆ’25

1๐‘ 2 + 1

โˆ’15

(๐‘  โˆ’ 1)(๐‘  โˆ’ 1)2 + 1

โˆ’15

1(๐‘  โˆ’ 1)2 + 1

+45

1(๐‘  โˆ’ 1)2 + 1

=15

๐‘ ๐‘ 2 + 1

โˆ’25

1๐‘ 2 + 1

โˆ’15

(๐‘  โˆ’ 1)(๐‘  โˆ’ 1)2 + 1

+35

1(๐‘  โˆ’ 1)2 + 1

Therefore (2) becomes

๐‘Œ (๐‘ ) =15

๐‘ ๐‘ 2 + 1

โˆ’25

1๐‘ 2 + 1

โˆ’15

(๐‘  โˆ’ 1)(๐‘  โˆ’ 1)2 + 1

+35

1(๐‘  โˆ’ 1)2 + 1

+๐‘ 

(๐‘  โˆ’ 1)2 + 1โˆ’

2(๐‘  โˆ’ 1)2 + 1

=15

๐‘ ๐‘ 2 + 1

โˆ’25

1๐‘ 2 + 1

โˆ’15

(๐‘  โˆ’ 1)(๐‘  โˆ’ 1)2 + 1

+35

1(๐‘  โˆ’ 1)2 + 1

+(๐‘  โˆ’ 1) + 1(๐‘  โˆ’ 1)2 + 1

โˆ’2

(๐‘  โˆ’ 1)2 + 1

=15

๐‘ ๐‘ 2 + 1

โˆ’25

1๐‘ 2 + 1

โˆ’15

(๐‘  โˆ’ 1)(๐‘  โˆ’ 1)2 + 1

+35

1(๐‘  โˆ’ 1)2 + 1

+(๐‘  โˆ’ 1)

(๐‘  โˆ’ 1)2 + 1+

1(๐‘  โˆ’ 1)2 + 1

โˆ’2

(๐‘  โˆ’ 1)2 + 1

=15

๐‘ ๐‘ 2 + 1

โˆ’25

1๐‘ 2 + 1

+45

(๐‘  โˆ’ 1)(๐‘  โˆ’ 1)2 + 1

โˆ’25

1(๐‘  โˆ’ 1)2 + 1

Using cos (๐‘Ž๐‘ก)โŸบ ๐‘ ๐‘ 2+๐‘Ž2 , sin (๐‘Ž๐‘ก)โŸบ

๐‘Ž๐‘ 2+๐‘Ž2 and the shift property of Laplace transform, then

15

๐‘ ๐‘ 2 + 1

โŸบ15

cos (๐‘ก)

25

1๐‘ 2 + 1

โŸบ25

sin (๐‘ก)

45

(๐‘  โˆ’ 1)(๐‘  โˆ’ 1)2 + 1

โŸบ45๐‘’๐‘ก cos ๐‘ก

25

1(๐‘  โˆ’ 1)2 + 1

โŸบ85๐‘’๐‘ก sin ๐‘ก

Page 10: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

10

Hence

๐‘ฆ (๐‘ก) =15

cos (๐‘ก) โˆ’ 25

sin (๐‘ก) + 45๐‘’๐‘ก cos ๐‘ก โˆ’ 2

5๐‘’๐‘ก sin ๐‘ก

15๏ฟฝcos ๐‘ก โˆ’ 2 sin ๐‘ก + 4๐‘’๐‘ก cos ๐‘ก โˆ’ 2๐‘’๐‘ก sin ๐‘ก๏ฟฝ

1.10 Section 6.2 problem 22

Use Laplace transform to solve ๐‘ฆโ€ฒโ€ฒ โˆ’ 2๐‘ฆโ€ฒ + 2๐‘ฆ = ๐‘’โˆ’๐‘ก; ๐‘ฆ (0) = 0, ๐‘ฆโ€ฒ (0) = 1

Solution Let ๐‘Œ (๐‘ ) = โ„’๏ฟฝ๐‘ฆ (๐‘ก)๏ฟฝ. Taking Laplace transform of the ODE, and using ๐‘’โˆ’๐‘ก โŸบ 1๐‘ +1 gives

๏ฟฝ๐‘ 2๐‘Œ (๐‘ ) โˆ’ ๐‘ ๐‘ฆ (0) โˆ’ ๐‘ฆโ€ฒ (0)๏ฟฝ โˆ’ 2 ๏ฟฝ๐‘ ๐‘Œ (๐‘ ) โˆ’ ๐‘ฆ (0)๏ฟฝ + 2๐‘Œ (๐‘ ) =1

๐‘  + 1(1)

Applying initial conditions gives

๐‘ 2๐‘Œ (๐‘ ) โˆ’ 1 โˆ’ 2๐‘ ๐‘Œ (๐‘ ) + 2๐‘Œ (๐‘ ) =1

๐‘  + 1Solving for ๐‘Œ (๐‘ )

๐‘Œ (๐‘ ) ๏ฟฝ๐‘ 2 โˆ’ 2๐‘  + 2๏ฟฝ โˆ’ 1 =1

๐‘  + 1

๐‘Œ (๐‘ ) =1

(๐‘  + 1) ๏ฟฝ๐‘ 2 โˆ’ 2๐‘  + 2๏ฟฝ+

1๐‘ 2 โˆ’ 2๐‘  + 2

(2)

But1

(๐‘  + 1) ๏ฟฝ๐‘ 2 โˆ’ 2๐‘  + 2๏ฟฝ=

๐ด๐‘  + 1

+๐ต๐‘  + ๐ถ

๐‘ 2 โˆ’ 2๐‘  + 2

1 = ๐ด ๏ฟฝ๐‘ 2 โˆ’ 2๐‘  + 2๏ฟฝ + (๐ต๐‘  + ๐ถ) (๐‘  + 1)

1 = 2๐ด + ๐ถ + ๐ด๐‘ 2 + ๐ต๐‘ 2 โˆ’ 2๐ด๐‘  + ๐ต๐‘  + ๐ถ๐‘ 1 = (2๐ด + ๐ถ) + ๐‘  (โˆ’2๐ด + ๐ต + ๐ถ) + ๐‘ 2 (๐ด + ๐ต)

Hence

1 = 2๐ด + ๐ถ0 = โˆ’2๐ด + ๐ต + ๐ถ0 = ๐ด + ๐ต

Solving gives ๐ด = 15 , ๐ต = โˆ’

15 , ๐ถ =

35 , therefore

1(๐‘  + 1) ๏ฟฝ๐‘ 2 โˆ’ 2๐‘  + 2๏ฟฝ

=15

1๐‘  + 1

+โˆ’ 15 ๐‘  +

35

๐‘ 2 โˆ’ 2๐‘  + 2

=15

1๐‘  + 1

โˆ’15

๐‘ ๐‘ 2 โˆ’ 2๐‘  + 2

+ +35

1๐‘ 2 โˆ’ 2๐‘  + 2

Completing the square for ๐‘ 2 โˆ’ 2๐‘  + 2 which was done in last problem, gives (๐‘  โˆ’ 1)2 + 1, hence the

Page 11: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

11

above becomes1

(๐‘  + 1) ๏ฟฝ๐‘ 2 โˆ’ 2๐‘  + 2๏ฟฝ=15

1๐‘  + 1

โˆ’15

๐‘ (๐‘  โˆ’ 1)2 + 1

+ +35

1(๐‘  โˆ’ 1)2 + 1

=15

1๐‘  + 1

โˆ’15(๐‘  โˆ’ 1) + 1(๐‘  โˆ’ 1)2 + 1

+35

1(๐‘  โˆ’ 1)2 + 1

=15

1๐‘  + 1

โˆ’15

(๐‘  โˆ’ 1)(๐‘  โˆ’ 1)2 + 1

โˆ’15

1(๐‘  โˆ’ 1)2 + 1

+35

1(๐‘  โˆ’ 1)2 + 1

=15

1๐‘  + 1

โˆ’15

(๐‘  โˆ’ 1)(๐‘  โˆ’ 1)2 + 1

+25

1(๐‘  โˆ’ 1)2 + 1

Therefore (2) becomes

๐‘Œ (๐‘ ) =15

1๐‘  + 1

โˆ’15

(๐‘  โˆ’ 1)(๐‘  โˆ’ 1)2 + 1

+25

1(๐‘  โˆ’ 1)2 + 1

+1

(๐‘  โˆ’ 1)2 + 1

Using cos (๐‘Ž๐‘ก)โŸบ ๐‘ ๐‘ 2+๐‘Ž2 , sin (๐‘Ž๐‘ก)โŸบ

๐‘Ž๐‘ 2+๐‘Ž2 and the shift property of Laplace transform, then

15

1๐‘  + 1

โŸบ15๐‘’โˆ’๐‘ก

15

(๐‘  โˆ’ 1)(๐‘  โˆ’ 1)2 + 1

โŸบ15๐‘’๐‘ก cos ๐‘ก

25

1(๐‘  โˆ’ 1)2 + 1

โŸบ25๐‘’๐‘ก sin ๐‘ก

1(๐‘  โˆ’ 1)2 + 1

โŸบ ๐‘’๐‘ก sin ๐‘ก

Hence

๐‘ฆ (๐‘ก) =15๐‘’โˆ’๐‘ก โˆ’

15๐‘’๐‘ก cos ๐‘ก + 2

5๐‘’๐‘ก sin ๐‘ก + ๐‘’๐‘ก sin ๐‘ก

=15๏ฟฝ๐‘’โˆ’๐‘ก โˆ’ ๐‘’๐‘ก cos ๐‘ก + 7๐‘’๐‘ก sin ๐‘ก๏ฟฝ

1.11 Section 6.2 problem 23

Use Laplace transform to solve ๐‘ฆโ€ฒโ€ฒ + 2๐‘ฆโ€ฒ + ๐‘ฆ = 4๐‘’โˆ’๐‘ก; ๐‘ฆ (0) = 2, ๐‘ฆโ€ฒ (0) = โˆ’1

Solution Let ๐‘Œ (๐‘ ) = โ„’๏ฟฝ๐‘ฆ (๐‘ก)๏ฟฝ. Taking Laplace transform of the ODE, and using ๐‘’โˆ’๐‘ก โŸบ 1๐‘ +1 gives

๏ฟฝ๐‘ 2๐‘Œ (๐‘ ) โˆ’ ๐‘ ๐‘ฆ (0) โˆ’ ๐‘ฆโ€ฒ (0)๏ฟฝ + 2 ๏ฟฝ๐‘ ๐‘Œ (๐‘ ) โˆ’ ๐‘ฆ (0)๏ฟฝ + ๐‘Œ (๐‘ ) =4

๐‘  + 1(1)

Applying initial conditions gives

๏ฟฝ๐‘ 2๐‘Œ (๐‘ ) โˆ’ 2๐‘  + 1๏ฟฝ + 2 (๐‘ ๐‘Œ (๐‘ ) โˆ’ 2) + ๐‘Œ (๐‘ ) =4

๐‘  + 1Solving for ๐‘Œ (๐‘ )

๐‘Œ (๐‘ ) ๏ฟฝ๐‘ 2 + 2๐‘  + 1๏ฟฝ โˆ’ 2๐‘  + 1 โˆ’ 4 =4

๐‘  + 1

๐‘Œ (๐‘ ) ๏ฟฝ๐‘ 2 + 2๐‘  + 1๏ฟฝ =4

๐‘  + 1+ 2๐‘  โˆ’ 1 + 4

๐‘Œ (๐‘ ) =4

(๐‘  + 1) ๏ฟฝ๐‘ 2 + 2๐‘  + 1๏ฟฝ+

2๐‘ ๏ฟฝ๐‘ 2 + 2๐‘  + 1๏ฟฝ

โˆ’1

๏ฟฝ๐‘ 2 + 2๐‘  + 1๏ฟฝ+

4๏ฟฝ๐‘ 2 + 2๐‘  + 1๏ฟฝ

Page 12: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

12

But ๏ฟฝ๐‘ 2 + 2๐‘  + 1๏ฟฝ = (๐‘  + 1)2, hence

๐‘Œ (๐‘ ) =4

(๐‘  + 1)3+

2๐‘ (๐‘  + 1)2

โˆ’1

(๐‘  + 1)2+

4(๐‘  + 1)2

(2)

But2๐‘ 

(๐‘  + 1)2= 2

๐‘  + 1 โˆ’ 1(๐‘  + 1)2

= 2(๐‘  + 1)(๐‘  + 1)2

โˆ’ 21

(๐‘  + 1)2

= 21

๐‘  + 1โˆ’ 2

1(๐‘  + 1)2

Hence (2) becomes

๐‘Œ (๐‘ ) =4

(๐‘  + 1)3+ 2

1๐‘  + 1

โˆ’ 21

(๐‘  + 1)2โˆ’

1(๐‘  + 1)2

+4

(๐‘  + 1)2(3)

We now ready to do the inversion. Since 1๐‘ 3 โŸบ

๐‘ก2

2 and 1๐‘ 2 โŸบ ๐‘ก and 1

๐‘  โŸบ1 and using the shift property๐‘’๐‘Ž๐‘ก๐‘“ (๐‘ก)โŸบ ๐น (๐‘  โˆ’ ๐‘Ž), then using these into (3) gives

4(๐‘  + 1)3

โŸบ4๐‘’โˆ’๐‘ก ๏ฟฝ๐‘ก2

2 ๏ฟฝ

21

๐‘  + 1โŸบ 2๐‘’โˆ’๐‘ก

21

(๐‘  + 1)2โŸบ2๐‘’โˆ’๐‘ก๐‘ก

1(๐‘  + 1)2

โŸบ๐‘’โˆ’๐‘ก๐‘ก

4(๐‘  + 1)2

โŸบ4๐‘’โˆ’๐‘ก๐‘ก

Now (3) becomes

๐‘Œ (๐‘ )โŸบ 4๐‘’โˆ’๐‘ก ๏ฟฝ๐‘ก2

2 ๏ฟฝ+ 2๐‘’โˆ’๐‘ก โˆ’ 2๐‘’โˆ’๐‘ก๐‘ก โˆ’ ๐‘’โˆ’๐‘ก๐‘ก + 4๐‘’โˆ’๐‘ก๐‘ก

= ๐‘’โˆ’๐‘ก ๏ฟฝ2๐‘ก2 + 2 โˆ’ 2๐‘ก โˆ’ ๐‘ก + 4๐‘ก๏ฟฝ

= ๐‘’โˆ’๐‘ก ๏ฟฝ2๐‘ก2 + ๐‘ก + 2๏ฟฝ

1.12 Section 6.3 problem 25

Suppose that ๐น (๐‘ ) = โ„’๏ฟฝ๐‘“ (๐‘ก)๏ฟฝ exists for ๐‘  > ๐‘Ž โ‰ฅ 0.

1. Show that if ๐‘ is positive constant then โ„’๏ฟฝ๐‘“ (๐‘๐‘ก)๏ฟฝ = 1๐‘๐น ๏ฟฝ

๐‘ ๐‘๏ฟฝ for ๐‘  > ๐‘๐‘Ž

2. Show that if ๐‘˜ is positive constant then โ„’ โˆ’1 {๐น (๐‘˜๐‘ )} = 1๐‘˜๐‘“ ๏ฟฝ

๐‘ก๐‘˜๏ฟฝ

3. Show that if ๐‘Ž, ๐‘ are constants with ๐‘Ž > 0 then โ„’ โˆ’1 {๐น (๐‘Ž๐‘  + ๐‘)} = 1๐‘Ž ๐‘’

โˆ’๐‘๐‘ก๐‘Ž ๐‘“ ๏ฟฝ ๐‘ก๐‘Ž๏ฟฝ

Solution

Page 13: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

13

1.12.1 Part (a)

From definition,

โ„’๏ฟฝ๐‘“ (๐‘๐‘ก)๏ฟฝ = ๏ฟฝโˆž

0๐‘“ (๐‘๐‘ก) ๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก

Let ๐‘๐‘ก = ๐œ, then when ๐‘ก = 0, ๐œ = 0 and when ๐‘ก = โˆž, ๐œ = โˆž, and ๐‘ = ๐‘‘๐œ๐‘‘๐‘ก . Hence the above becomes

โ„’๏ฟฝ๐‘“ (๐‘๐‘ก)๏ฟฝ = ๏ฟฝโˆž

0๐‘“ (๐œ) ๐‘’โˆ’๐‘ ๏ฟฝ

๐œ๐‘ ๏ฟฝ๐‘‘๐œ๐‘

=1๐‘ ๏ฟฝ

โˆž

0๐‘“ (๐œ) ๐‘’โˆ’๐œ๏ฟฝ

๐‘ ๐‘ ๏ฟฝ๐‘‘๐œ

We see from above that โ„’๏ฟฝ๐‘“ (๐‘๐‘ก)๏ฟฝ is 1๐‘๐น ๏ฟฝ

๐‘ ๐‘๏ฟฝ .Now we look at the conditions which makes the above

integral converges. Let

๏ฟฝ๐‘“ (๐œ) ๐‘’โˆ’๐œ๏ฟฝ๐‘ ๐‘ ๏ฟฝ๏ฟฝ โ‰ค ๐‘˜ ๏ฟฝ๐‘’๐‘Ž๐‘ก๐‘’โˆ’๐œ๏ฟฝ

๐‘ ๐‘ ๏ฟฝ๏ฟฝ

Where ๐‘˜ is some constant. Then

๏ฟฝโˆž

0๐‘“ (๐‘ก) ๐‘’โˆ’๐‘ก๏ฟฝ

๐‘ ๐‘ ๏ฟฝ๐‘‘๐‘ก โ‰ค ๐‘˜๏ฟฝ

โˆž

0๐‘’๐‘Ž๐‘ก๐‘’โˆ’๐‘ก๏ฟฝ

๐‘ ๐‘ ๏ฟฝ๐‘‘๐‘ก

= ๐‘˜๏ฟฝโˆž

0๐‘’โˆ’๐‘ก๏ฟฝ

๐‘ ๐‘โˆ’๐‘Ž๏ฟฝ๐‘‘๐‘ก

But โˆซโˆž

0๐‘’โˆ’๐‘ก๏ฟฝ

๐‘ ๐‘โˆ’๐‘Ž๏ฟฝ๐‘‘๐œ converges if ๐‘ 

๐‘ โˆ’ ๐‘Ž > 0 or

๐‘  > ๐‘๐‘Ž

Hence this is the condition for โˆซโˆž

0๐‘“ (๐‘ก) ๐‘’โˆ’๐‘ก๏ฟฝ

๐‘ ๐‘ ๏ฟฝ๐‘‘๐‘ก to converge. Which is what we required to show.

1.12.2 Part (b)

From definition

โ„’๏ฟฝ1๐‘˜๐‘“ ๏ฟฝ๐‘ก๐‘˜๏ฟฝ๏ฟฝ =

1๐‘˜โ„’๏ฟฝ๐‘“ ๏ฟฝ

๐‘ก๐‘˜๏ฟฝ๏ฟฝ

=1๐‘˜ ๏ฟฝ

โˆž

0๐‘“ ๏ฟฝ๐‘ก๐‘˜๏ฟฝ ๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก

Let ๐‘ก๐‘˜ = ๐œ. When ๐‘ก = 0, ๐œ = 0 and when ๐‘ก = โˆž, ๐œ = โˆž. ๐‘‘๐‘ก

๐‘‘๐œ = ๐‘˜, hence the above becomes

โ„’๏ฟฝ1๐‘˜๐‘“ ๏ฟฝ๐‘ก๐‘˜๏ฟฝ๏ฟฝ =

1๐‘˜ ๏ฟฝ

โˆž

0๐‘“ (๐œ) ๐‘’โˆ’๐‘ (๐‘˜๐œ) (๐‘˜๐‘‘๐œ)

= ๏ฟฝโˆž

0๐‘“ (๐œ) ๐‘’โˆ’๐œ(๐‘ ๐‘˜)๐‘‘๐œ

We see from above that โ„’๏ฟฝ 1๐‘˜๐‘“ ๏ฟฝ๐‘ก๐‘˜๏ฟฝ๏ฟฝ is ๐น (๐‘ ๐‘˜). In other words, โ„’ โˆ’1 {๐น (๐‘˜๐‘ )} = 1

๐‘˜๐‘“ ๏ฟฝ๐‘ก๐‘˜๏ฟฝ.

Page 14: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

14

1.12.3 Part (c)

From definition

โ„’๏ฟฝ1๐‘Ž๐‘’โˆ’๐‘๐‘ก๐‘Ž ๐‘“ ๏ฟฝ

๐‘ก๐‘Ž๏ฟฝ๏ฟฝ =

1๐‘Žโ„’๏ฟฝ๐‘’

โˆ’๐‘๐‘ก๐‘Ž ๐‘“ ๏ฟฝ

๐‘ก๐‘Ž๏ฟฝ๏ฟฝ

=1๐‘Ž ๏ฟฝ

โˆž

0๐‘’โˆ’๐‘๐‘ก๐‘Ž ๐‘“ ๏ฟฝ

๐‘ก๐‘Ž๏ฟฝ ๐‘’โˆ’๐‘ ๐‘ก๐‘‘๐‘ก

Let ๐‘ก๐‘Ž = ๐œ, at ๐‘ก = 0, ๐œ = 0 and at ๐‘ก = โˆž, ๐œ = โˆž. And ๐‘‘๐‘ก

๐‘‘๐œ = ๐‘Ž, hence the above becomes

โ„’๏ฟฝ1๐‘Ž๐‘’โˆ’๐‘๐‘ก๐‘Ž ๐‘“ ๏ฟฝ

๐‘ก๐‘Ž๏ฟฝ๏ฟฝ =

1๐‘Ž ๏ฟฝ

โˆž

0๐‘’โˆ’๐‘(๐‘Ž๐œ)

๐‘Ž ๐‘“ (๐œ) ๐‘’โˆ’๐‘ (๐‘Ž๐œ) (๐‘Ž๐‘‘๐œ)

= ๏ฟฝโˆž

0๐‘’โˆ’๐‘๐œ๐‘“ (๐œ) ๐‘’โˆ’๐œ(๐‘ ๐‘Ž)๐‘‘๐œ

= ๏ฟฝโˆž

0๐‘“ (๐œ) ๐‘’โˆ’๐œ(๐‘ ๐‘Ž+๐‘)๐‘‘๐œ

We see from the above, that โ„’๏ฟฝ 1๐‘Ž ๐‘’โˆ’๐‘๐‘ก๐‘Ž ๐‘“ ๏ฟฝ ๐‘ก๐‘Ž๏ฟฝ๏ฟฝ = ๐น (๐‘ ๐‘Ž + ๐‘). Now we look at the conditions which makes

the above integral converges. Let

๏ฟฝ๐‘“ (๐œ) ๐‘’โˆ’๐‘ก(๐‘ ๐‘Ž+๐‘)๏ฟฝ โ‰ค ๐‘˜ ๏ฟฝ๐‘’๐‘Ž๐‘ก๐‘’โˆ’๐‘ก(๐‘ ๐‘Ž+๐‘)๏ฟฝ

Where ๐‘˜ is some constant. Then

๏ฟฝโˆž

0๐‘“ (๐‘ก) ๐‘’โˆ’๐‘ก(๐‘ ๐‘Ž+๐‘)๐‘‘๐‘ก โ‰ค ๐‘˜๏ฟฝ

โˆž

0๐‘’๐‘Ž๐‘ก๐‘’โˆ’๐‘ก(๐‘ ๐‘Ž+๐‘)๐‘‘๐‘ก

= ๐‘˜๏ฟฝโˆž

0๐‘’โˆ’๐‘ก(๐‘ ๐‘Ž+๐‘โˆ’๐‘Ž)๐‘‘๐‘ก

But โˆซโˆž

0๐‘’โˆ’๐‘ก(๐‘ ๐‘Ž+๐‘โˆ’๐‘Ž)๐‘‘๐‘ก converges if ๐‘ ๐‘Ž + ๐‘ โˆ’ ๐‘Ž > 0 or ๐‘ ๐‘Ž > ๐‘Ž โˆ’ ๐‘ or ๐‘  > 1 โˆ’ ๐‘

๐‘Ž

1.13 Section 6.3 problem 26

Find inverse Laplace transform of ๐น (๐‘ ) = 2๐‘›+1๐‘›!๐‘ ๐‘›+1

Solution

We know from tables that๐‘›!๐‘ ๐‘›+1

โŸบ ๐‘ก๐‘›

Hence

2๐‘›+1๐‘›!๐‘ ๐‘›+1

โŸบ2๐‘›+1๐‘ก๐‘›

= 2 (2๐‘ก)๐‘›

1.14 Section 6.3 problem 27

Find inverse Laplace transform of ๐น (๐‘ ) = 2๐‘ +14๐‘ 2+4๐‘ +5

Solution

๐น (๐‘ ) =2๐‘ 

4๐‘ 2 + 4๐‘  + 5+

14๐‘ 2 + 4๐‘  + 5

Page 15: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

15

But 4๐‘ 2 + 4๐‘  + 5 = 4 ๏ฟฝ๐‘  + 12๏ฟฝ2+ 4, hence

๐น (๐‘ ) =2๐‘ 

4 ๏ฟฝ๐‘  + 12๏ฟฝ2+ 4

+1

4 ๏ฟฝ๐‘  + 12๏ฟฝ2+ 4

=๐‘ 

2 ๏ฟฝ๐‘  + 12๏ฟฝ2+ 2

+14

1

๏ฟฝ๐‘  + 12๏ฟฝ2+ 1

=12

๐‘ 

๏ฟฝ๐‘  + 12๏ฟฝ2+ 1

+14

1

๏ฟฝ๐‘  + 12๏ฟฝ2+ 1

=12๐‘  + 1

2 โˆ’12

๏ฟฝ๐‘  + 12๏ฟฝ2+ 1

+14

1

๏ฟฝ๐‘  + 12๏ฟฝ2+ 1

=12

๐‘  + 12

๏ฟฝ๐‘  + 12๏ฟฝ2+ 1

โˆ’14

1

๏ฟฝ๐‘  + 12๏ฟฝ2+ 1

+14

1

๏ฟฝ๐‘  + 12๏ฟฝ2+ 1

=12

๐‘  + 12

๏ฟฝ๐‘  + 12๏ฟฝ2+ 1

(1)

Now we ready to do the inversion. Using ๐‘’โˆ’๐‘Ž๐‘ก๐‘“ (๐‘ก) โŸบ ๐น (๐‘  + ๐‘Ž) and using sin (๐‘Ž๐‘ก) โŸบ ๐‘Ž๐‘ 2+๐‘Ž2 , and

cos (๐‘Ž๐‘ก)โŸบ ๐‘ ๐‘ 2+๐‘Ž2 then

12

๐‘  + 12

๏ฟฝ๐‘  + 12๏ฟฝ2+ 1

โŸบ12๐‘’โˆ’

12 ๐‘ก cos (๐‘ก)

Hence

๐‘“ (๐‘ก) =12๐‘’โˆ’

12 ๐‘ก cos (๐‘ก)

1.15 Section 6.3 problem 28

Find inverse Laplace transform of ๐น (๐‘ ) = 19๐‘ 2โˆ’12๐‘ +3

Solution

19๐‘ 2 โˆ’ 12๐‘  + 3

=19

1๐‘ 2 โˆ’ 4

3 ๐‘  +13

=19

1

(๐‘  โˆ’ 1) ๏ฟฝ๐‘  โˆ’ 13๏ฟฝ

Page 16: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

16

But1

(๐‘  โˆ’ 1) ๏ฟฝ๐‘  โˆ’ 13๏ฟฝ=

๐ด๐‘  โˆ’ 1

+๐ต

๐‘  โˆ’ 13

๐ด =

โŽ›โŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽœโŽ

1

๏ฟฝ๐‘  โˆ’ 13๏ฟฝ

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽŸโŽ ๐‘ =1

=32

๐ต = ๏ฟฝ1

(๐‘  โˆ’ 1)๏ฟฝ๐‘ = 1

3

= โˆ’32

Hence

19๐‘ 2 โˆ’ 12๐‘  + 3

=19

โŽ›โŽœโŽœโŽœโŽœโŽœโŽ32

1๐‘  โˆ’ 1

โˆ’32

1๐‘  โˆ’ 1

3

โŽžโŽŸโŽŸโŽŸโŽŸโŽŸโŽ  (1)

Using

๐‘’๐‘Ž๐‘ก โŸบ1

๐‘  โˆ’ ๐‘ŽThen (1) becomes

19๐‘ 2 โˆ’ 12๐‘  + 3

โŸบ19 ๏ฟฝ

32๐‘’๐‘ก โˆ’

32๐‘’13 ๐‘ก๏ฟฝ

=16๐‘’๐‘ก โˆ’

16๐‘’13 ๐‘ก

=16๏ฟฝ๐‘’๐‘ก โˆ’ ๐‘’

13 ๐‘ก๏ฟฝ

1.16 Section 6.3 problem 29

Find inverse Laplace transform of ๐น (๐‘ ) = ๐‘’2๐‘’โˆ’4๐‘ 

2๐‘ โˆ’1

solution

๐น (๐‘ ) =๐‘’2

2๐‘’โˆ’4๐‘ 

๐‘  โˆ’ 12

Using

๐‘ข๐‘ (๐‘ก) ๐‘“ (๐‘ก โˆ’ ๐‘)โŸบ ๐‘’โˆ’๐‘๐‘ ๐น (๐‘ ) (1)

Since1

๐‘  โˆ’ 12

โŸบ๐‘’12 ๐‘ก

Then using (1)

๐‘’โˆ’4๐‘ 1

๐‘  โˆ’ 12

โŸบ๐‘ข4 (๐‘ก) ๐‘’12 (๐‘กโˆ’4)

Page 17: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

17

Hence๐‘’2

2๐‘’โˆ’4๐‘ 

๐‘  โˆ’ 12

โŸบ๐‘’2

2๐‘ข4 (๐‘ก) ๐‘’

12 (๐‘กโˆ’4)

=12๐‘ข4 (๐‘ก) ๐‘’

12 (๐‘กโˆ’4)+2

=12๐‘ข4 (๐‘ก) ๐‘’

12 ๐‘กโˆ’2+2

=12๐‘ข4 (๐‘ก) ๐‘’

๐‘ก2

Therefore

๐‘“ (๐‘ก) =12๐‘ข4 (๐‘ก) ๐‘’

๐‘ก2

ps. Book answer is wrong. It gives

๐‘“ (๐‘ก) =12๐‘ข4 ๏ฟฝ

๐‘ก2๏ฟฝ ๐‘’

๐‘ก2

1.17 Section 6.3 problem 30

Find Laplace transform of ๐‘“ (๐‘ก) =

โŽงโŽชโŽชโŽจโŽชโŽชโŽฉ1 0 โ‰ค ๐‘ก < 10 ๐‘ก โ‰ฅ 1

solution

Writing ๐‘“ (๐‘ก) in terms of Heaviside step function gives

๐‘“ (๐‘ก) = ๐‘ข0 (๐‘ก) โˆ’ ๐‘ข1 (๐‘ก)

Using

๐‘ข๐‘ (๐‘ก) โŸบ ๐‘’โˆ’๐‘๐‘ 1๐‘ 

Therefore

โ„’{๐‘ข0 (๐‘ก)} = ๐‘’โˆ’0๐‘ 1๐‘ =1๐‘ 

โ„’ {๐‘ข1 (๐‘ก)} = ๐‘’โˆ’๐‘ 1๐‘ 

Hence

โ„’{๐‘ข0 (๐‘ก) โˆ’ ๐‘ข1 (๐‘ก)} =1๐‘ โˆ’ ๐‘’โˆ’๐‘ 

1๐‘ 

=1๐‘ (1 โˆ’ ๐‘’โˆ’๐‘ ) ๐‘  > 0

1.18 Section 6.3 problem 31

Find Laplace transform of ๐‘“ (๐‘ก) =

โŽงโŽชโŽชโŽชโŽชโŽชโŽชโŽจโŽชโŽชโŽชโŽชโŽชโŽชโŽฉ

1 0 โ‰ค ๐‘ก < 10 1 โ‰ค ๐‘ก < 21 2 โ‰ค ๐‘ก < 30 ๐‘ก โ‰ฅ 3

solution

Page 18: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

18

Writing ๐‘“ (๐‘ก) in terms of Heaviside step function gives

๐‘“ (๐‘ก) = ๐‘ข0 (๐‘ก) โˆ’ ๐‘ข1 (๐‘ก) + ๐‘ข2 (๐‘ก) โˆ’ ๐‘ข3 (๐‘ก)

Using

๐‘ข๐‘ (๐‘ก) โŸบ ๐‘’โˆ’๐‘๐‘ 1๐‘ 

But ๐‘“ (๐‘ก) = 1 in this case. Hence ๐น (๐‘ ) = 1๐‘  . Therefore

๐‘“ (๐‘ก)โŸบ1๐‘ ๐‘’0๐‘  โˆ’

1๐‘ ๐‘’โˆ’๐‘  +

1๐‘ ๐‘’โˆ’2๐‘  โˆ’

1๐‘ ๐‘’โˆ’3๐‘ 

=1๐‘ ๏ฟฝ1 โˆ’ ๐‘’โˆ’๐‘  + ๐‘’โˆ’2๐‘  โˆ’ ๐‘’โˆ’3๐‘ ๏ฟฝ ๐‘  > 0

1.19 Section 6.3 problem 32

Find Laplace transform of ๐‘“ (๐‘ก) = 1 + โˆ‘2๐‘›+1๐‘˜=1 (โˆ’1)๐‘˜ ๐‘ข๐‘˜ (๐‘ก)

solution

Using

๐‘ข๐‘ (๐‘ก) โŸบ ๐‘’โˆ’๐‘๐‘ 1๐‘ 

Therefore

โ„’๏ฟฝ1 +2๐‘›+1๏ฟฝ๐‘˜=1

(โˆ’1)๐‘˜ ๐‘ข๐‘˜ (๐‘ก)๏ฟฝ = โ„’{1} +โ„’๏ฟฝ2๐‘›+1๏ฟฝ๐‘˜=1

(โˆ’1)๐‘˜ ๐‘ข๐‘˜ (๐‘ก)๏ฟฝ

=1๐‘ +

2๐‘›+1๏ฟฝ๐‘˜=1

(โˆ’1)๐‘˜1๐‘ ๐‘’โˆ’๐‘˜๐‘ 

=2๐‘›+1๏ฟฝ๐‘˜=0

(โˆ’1)๐‘˜1๐‘ ๐‘’โˆ’๐‘˜๐‘ 

=1๐‘ 

2๐‘›+1๏ฟฝ๐‘˜=0

(โˆ’๐‘’โˆ’๐‘ )๐‘˜

Since |๐‘’โˆ’๐‘ | < 1 the sum converges. Using โˆ‘๐‘0 ๐‘Ž๐‘› = ๏ฟฝ

1โˆ’๐‘Ÿ๐‘+1

1โˆ’๐‘Ÿ๏ฟฝ. Where |๐‘Ÿ| < 1. So the answer is

โ„’๏ฟฝ1 +2๐‘›+1๏ฟฝ๐‘˜=1

(โˆ’1)๐‘˜ ๐‘ข๐‘˜ (๐‘ก)๏ฟฝ =1๐‘ 

โŽ›โŽœโŽœโŽœโŽ1 โˆ’ (โˆ’๐‘’โˆ’๐‘ )2๐‘›+2

1 โˆ’ (โˆ’๐‘’โˆ’๐‘ )

โŽžโŽŸโŽŸโŽŸโŽ 

=1๐‘ 

โŽ›โŽœโŽœโŽœโŽœโŽ1 โˆ’ (โˆ’๐‘’)โˆ’(2๐‘›+2)๐‘ 

1 + ๐‘’โˆ’๐‘ 

โŽžโŽŸโŽŸโŽŸโŽŸโŽ 

Since 2๐‘› + 2 is even then

โ„’๏ฟฝ1 +2๐‘›+1๏ฟฝ๐‘˜=1

(โˆ’1)๐‘˜ ๐‘ข๐‘˜ (๐‘ก)๏ฟฝ =1๐‘  ๏ฟฝ1 + ๐‘’โˆ’(2๐‘›+2)๐‘ 

1 + ๐‘’โˆ’๐‘  ๏ฟฝ ๐‘  > 0

1.20 Section 6.3 problem 33

Find Laplace transform of ๐‘“ (๐‘ก) = 1 + โˆ‘โˆž๐‘˜=1 (โˆ’1)

๐‘˜ ๐‘ข๐‘˜ (๐‘ก)

solution

Page 19: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

19

Using

๐‘ข๐‘ (๐‘ก) โŸบ ๐‘’โˆ’๐‘๐‘ 1๐‘ 

Therefore

โ„’๏ฟฝ1 +โˆž๏ฟฝ๐‘˜=1

(โˆ’1)๐‘˜ ๐‘ข๐‘˜ (๐‘ก)๏ฟฝ = โ„’{1} +โ„’๏ฟฝโˆž๏ฟฝ๐‘˜=1

(โˆ’1)๐‘˜ ๐‘ข๐‘˜ (๐‘ก)๏ฟฝ

=1๐‘ +

โˆž๏ฟฝ๐‘˜=1

(โˆ’1)๐‘˜1๐‘ ๐‘’โˆ’๐‘˜๐‘ 

=1๐‘ +1๐‘ 

โˆž๏ฟฝ๐‘˜=1

(โˆ’1)๐‘˜ ๐‘’โˆ’๐‘˜๐‘ 

=1๐‘ +1๐‘ 

โˆž๏ฟฝ๐‘˜=1

(โˆ’๐‘’โˆ’๐‘ )๐‘˜

Butโˆž๏ฟฝ๐‘˜=1

๐‘Ÿ๐‘˜ =๐‘Ÿ

1 โˆ’ ๐‘Ÿ|๐‘Ÿ| < 1

Since ๐‘  > 0 then|๐‘’โˆ’๐‘ | < 1. So the answer is1๐‘ +1๐‘ 

โˆ’๐‘’โˆ’๐‘ 

1 โˆ’ (โˆ’๐‘’โˆ’๐‘ )=1๐‘ โˆ’1๐‘ 

๐‘’โˆ’๐‘ 

1 + ๐‘’โˆ’๐‘ 

=1 + ๐‘’โˆ’๐‘  โˆ’ ๐‘’โˆ’๐‘ 

๐‘  (1 + ๐‘’โˆ’๐‘ )

=1

๐‘  (1 + ๐‘’โˆ’๐‘ )๐‘  > 0

1.21 Section 6.4 problem 21

August 7, 2012 21:04 c06 Sheet number 34 Page number 342 cyan black

342 Chapter 6. The Laplace Transform

Resonance and Beats. In Section 3.8 we observed that an undamped harmonic oscillator(such as a springโ€“mass system) with a sinusoidal forcing term experiences resonance if thefrequency of the forcing term is the same as the natural frequency. If the forcing frequencyis slightly different from thenatural frequency,then the systemexhibits a beat. InProblems19 through 23 we explore the effect of some nonsinusoidal periodic forcing functions.

19. Consider the initial value problem

yโ€ฒโ€ฒ + y = f (t), y(0) = 0, yโ€ฒ(0) = 0,where

f (t) = u0(t) + 2nโˆ‘

k=1(โˆ’1)kukฯ€(t).

(a) Draw the graph of f (t) on an interval such as 0 โ‰ค t โ‰ค 6ฯ€.(b) Find the solution of the initial value problem.(c) Let n = 15 and plot the graph of the solution for 0 โ‰ค t โ‰ค 60. Describe the solutionand explain why it behaves as it does.(d) Investigate how the solution changes as n increases.What happens as n โ†’ โˆž?

20. Consider the initial value problem

yโ€ฒโ€ฒ + 0.1yโ€ฒ + y = f (t), y(0) = 0, yโ€ฒ(0) = 0,where f (t) is the same as in Problem 19.(a) Plot the graph of the solution. Use a large enough value of n and a long enought-interval so that the transient part of the solution has become negligible and the steadystate is clearly shown.(b) Estimate the amplitude and frequency of the steady state part of the solution.(c) Compare the results of part (b) with those from Section 3.8 for a sinusoidally forcedoscillator.

21. Consider the initial value problem

yโ€ฒโ€ฒ + y = g(t), y(0) = 0, yโ€ฒ(0) = 0,where

g(t) = u0(t) +nโˆ‘

k=1(โˆ’1)kukฯ€(t).

(a) Draw the graph of g(t) on an interval such as 0 โ‰ค t โ‰ค 6ฯ€. Compare the graph withthat of f (t) in Problem 19(a).(b) Find the solution of the initial value problem.(c) Let n = 15 and plot the graph of the solution for 0 โ‰ค t โ‰ค 60. Describe the solutionand explain why it behaves as it does. Compare it with the solution of Problem 19.(d) Investigate how the solution changes as n increases.What happens as n โ†’ โˆž?

22. Consider the initial value problem

yโ€ฒโ€ฒ + 0.1yโ€ฒ + y = g(t), y(0) = 0, yโ€ฒ(0) = 0,where g(t) is the same as in Problem 21.(a) Plot the graph of the solution. Use a large enough value of n and a long enough t-interval so that the transient part of the solution has become negligible and the steadystate is clearly shown.(b) Estimate the amplitude and frequency of the steady state part of the solution.

1.21.1 Part (a)

A plot of part (a) is the following

Page 20: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

20

ฯ€ 2 ฯ€ 3 ฯ€ 4 ฯ€ 5 ฯ€ 6 ฯ€

0.2

0.4

0.6

0.8

1.0

6.4 (21) part (a) plot

And a plot of part(a) for problem 19 is the following

ฯ€ 2 ฯ€ 3 ฯ€ 4 ฯ€ 5 ฯ€ 6 ฯ€

-1.0

-0.5

0.5

1.0

6.4 (19) part (a) plot

We see the e๏ฟฝect of having a 2 inside the sum. It extends the step ๐‘ข๐‘ (๐‘ก) function to negative side.

1.21.2 Part (b)

The easy way to do this, is to solve for each input term separately, and then add all the solutions,since this is a linear ODE. Once we solve for the first 2-3 terms, we will see the pattern to use forthe overall solution. Since the input ๐‘” (๐‘ก) is ๐‘ข0 (๐‘ก) + โˆ‘

โˆž๐‘˜=1 (โˆ’1)

๐‘˜ ๐‘ข๐‘˜๐œ‹ (๐‘ก), we will first first the response to๐‘ข0 (๐‘ก) , then for โˆ’๐‘ข๐œ‹ (๐‘ก) then for +๐‘ข2๐œ‹ (๐‘ก), and so on, and add them.

When the input is ๐‘ข0 (๐‘ก), then its Laplace transform is 1๐‘  , Hence, taking Laplace transform of the

ODE gives (where now ๐‘Œ (๐‘ ) = โ„’๏ฟฝ๐‘ฆ (๐‘ก)๏ฟฝ)

๏ฟฝ๐‘ 2๐‘Œ (๐‘ ) โˆ’ ๐‘ ๐‘ฆ (0) + ๐‘ฆโ€ฒ (0)๏ฟฝ + ๐‘Œ (๐‘ ) =1๐‘ 

Applying initial conditions

๐‘ 2๐‘Œ (๐‘ ) + ๐‘Œ (๐‘ ) =1๐‘ 

Page 21: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

21

Solving for ๐‘Œ0 (๐‘ ) (called it ๐‘Œ0 (๐‘ ) since the input is ๐‘ข0 (๐‘ก))

๐‘Œ0 (๐‘ ) =1

๐‘  ๏ฟฝ๐‘ 2 + 1๏ฟฝ

=1๐‘ โˆ’

๐‘ ๐‘ 2 + 1

Hence

๐‘ฆ0 (๐‘ก) = 1 โˆ’ cos ๐‘ก

We now do the next input, which is โˆ’๐‘ข๐œ‹ (๐‘ก), which has Laplace transform of โˆ’ ๐‘’โˆ’๐œ‹๐‘ 

๐‘  , therefore, followingwhat we did above, we obtain now

๐‘Œ๐œ‹ (๐‘ ) =โˆ’๐‘’โˆ’๐œ‹๐‘ 

๐‘  ๏ฟฝ๐‘ 2 + 1๏ฟฝ

= โˆ’๐‘’โˆ’๐œ‹๐‘  ๏ฟฝ1๐‘ โˆ’

๐‘ ๐‘ 2 + 1๏ฟฝ

The e๏ฟฝect of ๐‘’โˆ’๐œ‹๐‘  is to cause delay in time. Hence the the inverse Laplace transform of the above isthe same as ๐‘ฆ0 (๐‘ก) but with delay

๐‘ฆ๐œ‹ (๐‘ก) = โˆ’๐‘ข๐œ‹ (๐‘ก) (1 โˆ’ cos (๐‘ก โˆ’ ๐œ‹))

Similarly, when the input is +๐‘ข2๐œ‹ (๐‘ก), which which has Laplace transform of ๐‘’โˆ’2๐œ‹๐‘ 

๐‘  , therefore, followingwhat we did above, we obtain now

๐‘Œ๐œ‹ (๐‘ ) =๐‘’โˆ’2๐œ‹๐‘ 

๐‘  ๏ฟฝ๐‘ 2 + 1๏ฟฝ

= ๐‘’โˆ’2๐œ‹๐‘  ๏ฟฝ1๐‘ โˆ’

๐‘ ๐‘ 2 + 1๏ฟฝ

The e๏ฟฝect of ๐‘’โˆ’2๐œ‹๐‘  is to cause delay in time. Hence the the inverse Laplace transform of the above isthe same as ๐‘ฆ0 (๐‘ก) but with now with delay of 2๐œ‹, therefore

๐‘ฆ2๐œ‹ (๐‘ก) = +๐‘ข2๐œ‹ (๐‘ก) (1 โˆ’ cos (๐‘ก โˆ’ 2๐œ‹))

And so on. We see that if we add all the responses, we obtain

๐‘ฆ (๐‘ก) = ๐‘ฆ0 (๐‘ก) + ๐‘ฆ๐œ‹ (๐‘ก) + ๐‘ฆ2๐œ‹ (๐‘ก) +โ‹ฏ= (1 โˆ’ cos ๐‘ก) โˆ’ ๐‘ข๐œ‹ (๐‘ก) (1 โˆ’ cos (๐‘ก โˆ’ ๐œ‹)) + ๐‘ข2๐œ‹ (๐‘ก) (1 โˆ’ cos (๐‘ก โˆ’ 2๐œ‹)) โˆ’โ‹ฏ

Or

๐‘ฆ (๐‘ก) = (1 โˆ’ cos ๐‘ก) +๐‘›๏ฟฝ๐‘˜=1

(โˆ’1)๐‘˜ ๐‘ข๐‘˜๐œ‹ (๐‘ก) (1 โˆ’ cos (๐‘ก โˆ’ ๐‘˜๐œ‹)) (1)

1.21.3 Part (c)

This is a plot of (1) for ๐‘› = 15

Page 22: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

22

10 20 30 40 50 60t

-15

-10

-5

5

10

15

y(t)6.4 (21) part (c) plot

We see the solution growing rapidly, they settling down after about ๐‘ก = 50 to sinusoidal wave atamplitude of about ยฑ15. This shows the system reached steady state at around ๐‘ก = 50.

To compare it with problem 19 solution, I used the solution for 19 given in the book, and plottedboth solution on top of each others. Also for up to ๐‘ก = 60. Here is the result

problem 21

problem 19

2 ฯ€ 4 ฯ€ 6 ฯ€ 8 ฯ€ 10 ฯ€ 12 ฯ€ 14 ฯ€ 16 ฯ€ 18 ฯ€t

-30

-20

-10

10

20

30

y(t)

We see that problem 19 output follows the same pattern (since same frequency is used), but withdouble the amplitude. This is due to the 2 factor used in problem 19 compared to this problem.

1.21.4 Part(d)

At first, I tried it with ๐‘› = 50, 150, 250, 350, 450, 550. I can not see any noticeable change in the plot.Here is the result.

Page 23: HW 8, Math 319, Fall 2016ย ยท 2 1 HW 8 1.1 Section 6.1 problem 7 Find Laplace Transform of ๐‘“ (๐‘ก )=cosh๐‘๐‘ก solution Since cosh(๐‘๐‘ก)=๐‘’ ๐‘๐‘ก+๐‘’โˆ’๐‘๐‘ก 2 then

23

10 20 30 40 50 60

-20

-10

10

20

n = 50

10 20 30 40 50 60

-20

-10

10

20

n = 150

10 20 30 40 50 60

-20

-10

10

20

n = 250

10 20 30 40 50 60

-20

-10

10

20

n = 350

10 20 30 40 50 60

-20

-10

10

20

n = 450

10 20 30 40 50 60

-20

-10

10

20

n = 550

Even at ๐‘› = 2000 there was no change to be noticed.

10 20 30 40 50 60

-20

-10

10

20n = 2000

This shows additional input in the form of shifted unit steps, do not change the steady state solution.