First Slide - UNCW Faculty and Staff Web Pagespeople.uncw.edu/hermanr/latex/BeamerExample.pdf ·...

Post on 27-Jun-2020

0 views 0 download

Transcript of First Slide - UNCW Faculty and Staff Web Pagespeople.uncw.edu/hermanr/latex/BeamerExample.pdf ·...

First Slide

Here we add some text.

Second Slide

Here we add some bullets.

I Simple bullets, not sentences.

I Capitalize first word.I Punctuate consistently.

I Leonhard Euler (1707 - 1783)

I Swiss mathematicianI Lived with Bernoulli’sI Konigsberg bridges

I Too many bullets will kill your talk!

Third slide

Here we add some equations - one term at a time.

y = ax2

This method uses in an align* environment:

\only<1>{y=ax^2}

\only<2>{y=ax^2+bx}

\only<3>{y=ax^2+bx+c}

Third slide

Here we add some equations - one term at a time.

y = ax2 + bx

This method uses in an align* environment:

\only<1>{y=ax^2}

\only<2>{y=ax^2+bx}

\only<3>{y=ax^2+bx+c}

Third slide

Here we add some equations - one term at a time.

y = ax2 + bx + c

This method uses in an align* environment:

\only<1>{y=ax^2}

\only<2>{y=ax^2+bx}

\only<3>{y=ax^2+bx+c}

Other Equation Reveals

Using

\begin{equation*}

y = 5x^2 + \onslide<2->{3x}

\end{equation*}

the ”3x” will be shown later than y = 5x2:

y = 5x2 +

3x

Other Equation Reveals

Using

\begin{equation*}

y = 5x^2 + \onslide<2->{3x}

\end{equation*}

the ”3x” will be shown later than y = 5x2:

y = 5x2 + 3x

Other Equation Reveals ...

Using

\begin{align*}

\onslide<1->{a &= b \\}

\onslide<2->{b &= c \\}

\onslide<3>{\Rightarrow \quad

a &= c}

\end{align*}

We have

a = b

b = c

⇒ a = c

Other Equation Reveals ...

Using

\begin{align*}

\onslide<1->{a &= b \\}

\onslide<2->{b &= c \\}

\onslide<3>{\Rightarrow \quad

a &= c}

\end{align*}

We have

a = b

b = c

⇒ a = c

Other Equation Reveals ...

Using

\begin{align*}

\onslide<1->{a &= b \\}

\onslide<2->{b &= c \\}

\onslide<3>{\Rightarrow \quad

a &= c}

\end{align*}

We have

a = b

b = c

⇒ a = c

Other Equation Reveals ...

0 = x2 + 4x + 6

begin{align*}

\only<1-5>{0 &= x^2+4x+6} \\

\only<2-5>{ &= (x^2+4x+ \alert{2^2}) - ... \\

\only<3-5>{ &= (x+2)^2+2} \\

\only<4-5>{-2 &= (x+2)^2} \\

\only<5-5>{x &= -2 \pm 2i.}

\end{align*}

Other Equation Reveals ...

0 = x2 + 4x + 6

= (x2 + 4x + 22)− 22 + 6

begin{align*}

\only<1-5>{0 &= x^2+4x+6} \\

\only<2-5>{ &= (x^2+4x+ \alert{2^2}) - ... \\

\only<3-5>{ &= (x+2)^2+2} \\

\only<4-5>{-2 &= (x+2)^2} \\

\only<5-5>{x &= -2 \pm 2i.}

\end{align*}

Other Equation Reveals ...

0 = x2 + 4x + 6

= (x2 + 4x + 22)− 22 + 6

= (x + 2)2 + 2

begin{align*}

\only<1-5>{0 &= x^2+4x+6} \\

\only<2-5>{ &= (x^2+4x+ \alert{2^2}) - ... \\

\only<3-5>{ &= (x+2)^2+2} \\

\only<4-5>{-2 &= (x+2)^2} \\

\only<5-5>{x &= -2 \pm 2i.}

\end{align*}

Other Equation Reveals ...

0 = x2 + 4x + 6

= (x2 + 4x + 22)− 22 + 6

= (x + 2)2 + 2

− 2 = (x + 2)2

begin{align*}

\only<1-5>{0 &= x^2+4x+6} \\

\only<2-5>{ &= (x^2+4x+ \alert{2^2}) - ... \\

\only<3-5>{ &= (x+2)^2+2} \\

\only<4-5>{-2 &= (x+2)^2} \\

\only<5-5>{x &= -2 \pm 2i.}

\end{align*}

Other Equation Reveals ...

0 = x2 + 4x + 6

= (x2 + 4x + 22)− 22 + 6

= (x + 2)2 + 2

− 2 = (x + 2)2

x = −2± 2i .

begin{align*}

\only<1-5>{0 &= x^2+4x+6} \\

\only<2-5>{ &= (x^2+4x+ \alert{2^2}) - ... \\

\only<3-5>{ &= (x+2)^2+2} \\

\only<4-5>{-2 &= (x+2)^2} \\

\only<5-5>{x &= -2 \pm 2i.}

\end{align*}

Equation Overlays

f (x) = ax2 + bx + cThis is done using alerts:

\begin{equation*}

\alert<1->{f(x)} = \alert<2>{ax^2} + \alert<3>{bx} + \alert<4>{c}

\end{equation*}

Equation Overlays

f (x) = ax2 + bx + cThis is done using alerts:

\begin{equation*}

\alert<1->{f(x)} = \alert<2>{ax^2} + \alert<3>{bx} + \alert<4>{c}

\end{equation*}

Equation Overlays

f (x) = ax2 + bx + cThis is done using alerts:

\begin{equation*}

\alert<1->{f(x)} = \alert<2>{ax^2} + \alert<3>{bx} + \alert<4>{c}

\end{equation*}

Equation Overlays

f (x) = ax2 + bx + cThis is done using alerts:

\begin{equation*}

\alert<1->{f(x)} = \alert<2>{ax^2} + \alert<3>{bx} + \alert<4>{c}

\end{equation*}

More Complicated Example

I Function of x

f (x) = ax2 + bx + c (1)

I Quadratic term

I Linear term

I Constant term

More Complicated Example

I Function of x

f (x) = ax2 + bx + c (1)

I Quadratic term

I Linear term

I Constant term

More Complicated Example

I Function of x

f (x) = ax2 + bx + c (1)

I Quadratic term

I Linear term

I Constant term

More Complicated Example

I Function of x

f (x) = ax2 + bx + c (1)

I Quadratic term

I Linear term

I Constant term

More Complicated Example

I Function of x

f (x) = ax2 + bx + c (1)

I Quadratic term

I Linear term

I Constant term

Two Columns

Interesting points about thestatue:

I Point One

I Point Two

I Point Three

Figure: The Thinker, by Rodin, inKansas City.

See next page for the code.

Two Columns - Code

\begin{columns}[t]

\begin{column}{0.5\textwidth}

Interesting points about the statue:

\begin{itemize}

\item Point One

\item Point Two

\item Point Three

\end{itemize}

\end{column}

\begin{column}{0.5\textwidth}

\begin{figure}

\includegraphics[width=2in]{thinker.jpg}

\caption{The Thinker, by Rodin, in Kansas City.}

\label{fig:thinker}

\end{figure}

\end{column}

\end{columns}

Blocks, Example Blocks, Alert Blocks

These block style appear differently in other Beamer Themes withboxes and colored headers.

My Block

This is a block.

My Example

This is an example block.

My Alert

This is an alert block.Create these using:

\begin{block}{My Block}

This is a block.

\end{block}

\begin{exampleblock}{My Example}

This is an example block.

\end{exampleblock}

\begin{alertblock}{My Alert}

This is an alert block.

\end{alertblock}

tcolorbox

Look up tcolorbox and you can design your own colored boxes.

title

test a second line

test without title.

title

test

Example

test

References

P. Erdos, A selection of problems and results in combinatorics,Recent trends in combinatorics (Matrahaza, 1995), CambridgeUniv. Press, Cambridge, 2001, pp. 1–6.

R.L. Graham, D.E. Knuth, and O. Patashnik, Concretemathematics, Addison-Wesley, Reading, MA, 1989.

D.E. Knuth, Two notes on notation, Amer. Math. Monthly 99(1992), 403–422.

H. Simpson, Proof of the Riemann Hypothesis, preprint(2003), available athttp://www.math.drofnats.edu/riemann.ps.