Energy Efficiency of A Pragmatic View - IEEEewh.ieee.org/conf/vppc/Speaker/KS02-8_Bob_Lee.pdf ·...

Post on 22-Mar-2020

3 views 0 download

Transcript of Energy Efficiency of A Pragmatic View - IEEEewh.ieee.org/conf/vppc/Speaker/KS02-8_Bob_Lee.pdf ·...

Energy Efficiency of Automobiles  –A Pragmatic View

Bob Lee

Vice President ‐ Powertrain Product Engineering

Chrysler Group LLC

IEEE Vehicle Power and Propulsion ConferenceDearborn, MichiganSeptember 9, 2009

2

IEEE Space

3

Outline

• Energy efficiency space

• Fuel economy and energy efficiency

• Where does the energy go

• Fuel economy ideal function

• Pragmatic energy efficiency improvement   model

• Summary

4

Energy Efficiency Space

5

What is “Efficiency” ?

The dictionary defines efficiency as:

• The ratio of the effective or useful output to the total input in any system

• The ratio of the energy delivered by a dynamic system  to the energy supplied for its operation

6

What is “ Energy Efficiency”

“Take the Stairs‐‐Be More Energy Efficient”

7

The Physics: Converting Fuel Energy to Work

FEC (Highway) Drive Trace

Ftire Ftrac

Faero

MgFbrake

Laws of PhysicsForce = Mass x Acceleration

Torque = Inertia x Angular AccelConservation of Energy

1st Law of ThermodynamicsLower Heating Value of FuelWork = Force x Distance

…and so on

Mph

Time

Fuel Economy generally refers to how much distance a specific vehicle can be moved from A to B with a given volume of fuel.  Fuel Efficiency generally refers to how well the energy of the fuel is converted into useful work.

Fuel Economy

= 28.6 mpg

8

Key Fuel Economy MetricsFuel Economy Labels

Regulatory requirement, but also used competitively (can be advertised)Administered by EPA with Manufacturer self‐certification

Consumer ReportsCompetitive testing by highly influential Independent 3rd partyCannot be advertisedChrysler strategic objective is to be top quartile in each segment

Corporate Average Fuel Economy (CAFE)Fleet mpg average, administered by NHTSA

European Union Fuel Consumption

Expressed as Liters/100 Km on unique New European Driving Cycle (NEDC)Homologation testing conducted by Manufacturer with an EU approved witnessWidely reported (German Auto Motor und Sport is similar to Consumer Reports) and can be advertised

CO2 Emissions (Greenhouse gas “pollutant”) Inversely proportional to mpg fuel economy (directly proportional to fuel consumption) for a given fuel.  Expressed as gm/mi or gm/kmVoluntary fleet average agreement exists between Manufacturers Association (ACEA) and the European Union

9

Key Metrics & Cycles – Fuel Economy Labels

FTP City Drive Cycle

HWFET Highway Drive Cycle

US06 High Speed Drive Cycle

SC03 Air Conditioning Drive Cycle20°F Cold City Drive Cycle

EPA City and Highway label values are calculated as weighted combinations of 5 key tests.  They are posted on the new vehicle’s window label along with a competitive segment position.  The city, highway and cold city cycles feature light engine loads and mostly low vehicle speeds.

57 mph

57 mph

81 mph

60 mph

55 mph

The FTP City and HWFET Highway are also combined into an EPA unadjusted value for use in CAFE

10

Energy Supply from Internal Combustion EngineOnly about 1/3 of the fuel energy is converted by the internal combustion gasoline engine into vehicle work.  Advanced gasoline engine technologies (and diesels as well) are aimed at improving the efficiencies and reducing the losses associated with the other 2/3 of the energy available.

To Work

Losses

11

Where the Vehicle Energy is Spent in City Driving

Most of the fuel energy on a city type cycle is consumed by (repeatedly) accelerating the mass (weight) of the vehicle, but other vehicle demands & losses take energy also.

12

Where the Vehicle Energy is Spent in Highway Driving

Most of the fuel energy on a highway type cycle is consumed overcoming the aerodynamic drag of the vehicle, but other demands & losses take energy as well.

13

Thermal Efficiency (Comp Ratio)Combustion Efficiency

Heat/Mass LossPumping Work

Mechanical Friction

Variable Compression Ratio Direct Injection

Downsizing & Pressure ChargingVariable Valve Lift/Timing

Multi‐Displacement Sys (Cyl Deact)Diesel

Hybrid (Regen Braking, E‐drive)Fuel Cell

Technologies

Energy Demand(Vehicle Loads, Efficiencies, and Losses)

Vehicle SizeMaterial SubstitutionWeight OptimizationLoads / Duty Cycles

Weight Aero Drag Road Loads Accessory Loads Drivetrain Losses

Frontal Area / HeightDrag CoefficientFront End SealingBelly Pans/FairingsGrille Shutters

Rolling ResistanceBrake DragBearing Drag

Electric Pwr SteeringVar Disp CompressorElectrical Load Mgmt

LED tail lightsVar Speed Fuel Pump

Radiator SizingVar Speed Fan

Reflective Coatings

Torque ConverterDual Clutch TransCont Variable Trans

Axle/ LubeFront Axle DisconnectWheel Size (Inertia)

DesignTechnologies

DesignTechnologies

DesignTechnologies

DesignTechnologies

DesignTechnologies

Energy Supply and Vehicle DemandThe Physics: Fuel Economy is a function of the total vehicle system, comprising  both energy supply in the propulsion system and energy demand of and from the vehicle.  Improving it thus requires a total vehicle solution.

Energy Supply(Conversion Efficiency and Losses)

14

0

5

10

15

20

25

30

35

40

10 15 20 25 30 35 40 45 50 55 60 65 70

Vehicle Speed [mph]

Road

 Load Po

wer [h

p]

Aerodynamic

Transmission/Driveline

Hubs/Bearings

Brakes

Tires ‐ P225/55/R19 Kumho Solus KH16

Road Load ‐ Subsystem Contributors

Data Source:  Chrysler LLC, Dept. 7300

EPA CityAverage Speed

21 mph

EPA HighwayAverage Speed

48 mph

EPA CombinedAverage Speed

33 mph

CR HighwayAverage Speed

65 mph

15

Pragmatic Efficiency Improvement Model

•Gains in propulsion efficiency are best built upon reduced vehicle energy demand, as it maximizes the impact of transmission matching and allows engine size and technology to be optimized.  

Driver

• Customers• Regulations• Competition• Suppliers• Energy Cost

• Customers• Regulations• Competition• Suppliers• Energy Cost

VehicleEnergyDemand

VehicleEnergyDemand

Transmission / DrivelineMatching

EngineImprovement

Enabler Enabler

Overall Objectives

• Improve fuel economy

• Refinement

• Cost and complexity reduction

• Competitive performance

Electrification(HEV, ReEV, BEV)Electrification(HEV, ReEV, BEV)

Enabler

Priority:Best Bang

for Buck

Priority:Best Bang

for Buck

16

Pragmatic Efficiency Improvement Model

•Gains in propulsion efficiency are best built upon reduced vehicle energy demand, as it maximizes the impact of transmission matching and allows engine size and technology to be optimized.  

Driver

• Customers• Regulations• Competition• Suppliers• Energy Cost

• Customers• Regulations• Competition• Suppliers• Energy Cost

VehicleEnergyDemand

VehicleEnergyDemand

Transmission / DrivelineMatching

EngineImprovement

Enabler Enabler

Overall Objectives

• Improve fuel economy

• Refinement

• Cost and complexity reduction

• Competitive performance

Electrification(HEV, ReEV, BEV)Electrification(HEV, ReEV, BEV)

Enabler

Priority:Best Bang

for Buck

Priority:Best Bang

for Buck

17

ProductsBenefitsTechnology

Transmission and Driveline – Efficient and Light Weight Axle Technology 

Fuel Efficient Rear and Front Drive Unitsfor Pass Car

& SUVOpen diff, LSD, eLSD

18

Pragmatic Efficiency Improvement Model

•Gains in propulsion efficiency are best built upon reduced vehicle energy demand, as it maximizes the impact of transmission matching and allows engine size and technology to be optimized.  

Driver

• Customers• Regulations• Competition• Suppliers• Energy Cost

• Customers• Regulations• Competition• Suppliers• Energy Cost

VehicleEnergyDemand

VehicleEnergyDemand

Transmission / DrivelineMatching

EngineImprovement

Enabler Enabler

Overall Objectives

• Improve fuel economy

• Refinement

• Cost and complexity reduction

• Competitive performance

Electrification(HEV, ReEV, BEV)Electrification(HEV, ReEV, BEV)

Enabler

Priority:Best Bang

for Buck

Priority:Best Bang

for Buck

19

Electrified System Optimization

Electrical Losses EMA

-1 00

1 0

-2 0 00

2 0 00

5 0

1 0 0

n EM 1 [ 1 0 0M EM 1 [ N m ]P

VEM

1 [KW

]

05000

0200

4000

10

20

nVM [1/min]MVM [Nm]

PV

B [KW

]

Electrical Losses EMB

-1 00

1 0

-2 0 00

2 0 00

5 0

1 0 0

n EM 1 [ 1 0 0M EM 1 [ N m ]

PV

EM1 [K

W]

Battery Losses

CombustionEngine Losses

02000

400060

0200

4000

200

400

600

nVM [1/min]MVM [Nm]

PV

M [K

W]

+Transmission Pump Losses

02

4

02

40

20

40

nVM [1000/min]nAB [1000/min]

PV

G [K

W]+ =

0

5

0

2 0 0

4 0 00

5 0 0

1 0 0 0

1 5 0 0

N IC E [ 1 0 0 0T ICE [N m ]

PL [K

W]

M[N

m]

Overall Powertrain

System Loss

The optimal solution is found in the minimal point of the sum of all losses

Controls & Simulation

20

Pragmatic Model

•Gains in propulsion efficiency are best built upon reduced vehicle energy demand, as it maximizes the impact of transmission matching and allows engine size and technology to be optimized.  

Driver

• Customers• Regulations• Competition• Suppliers• Energy Cost

• Customers• Regulations• Competition• Suppliers• Energy Cost

VehicleEnergyDemand

VehicleEnergyDemand

Transmission / DrivelineMatching

EngineImprovement

Enabler Enabler

Overall Objectives

• Improve fuel economy

• Refinement

• Cost and complexity reduction

• Competitive performance

Electrification(HEV, ReEV, BEV)Electrification(HEV, ReEV, BEV)

Enabler

Priority:Best Bang

for Buck

Priority:Best Bang

for Buck

21

Summary

• Automobile energy efficiency can be viewed  as the relationship between Vehicle Demand Energy and Propulsion Efficiency over a given drive cycle

• Increasing energy efficiency should be a total vehicle exercise requiring detailed improvements in both Vehicle Demand Energy and Propulsion Efficiency

• Reductions in Vehicle Demand Energy typically provide better "Bang for the Buck" and are synergistic with electrification scenarios   

• Electrified powertrains require closer cooperation between the traditional mechanical and electrical disciplines to maximize energy efficiency

22

Thank You