EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC.

Post on 18-Jan-2018

228 views 0 download

description

EE415 VLSI Design Example Gate: COMPLEX CMOS GATE

Transcript of EE415 VLSI Design. Read 4.1, 4.2 COMBINATIONAL LOGIC.

EE415 VLSI Design

EE415 VLSI Design

Read 4.1, 4.2

COMBINATIONAL LOGIC

EE415 VLSI Design

Example Gate: COMPLEX CMOS GATE

VDD

AB

C

D

DA

B C

OUT = D + A• (B+C)

EE415 VLSI Design

Propagation Delay Analysis - The Switch Model

VDDVDDVDD

CL

F CL

CL

F

F

RpRp Rp Rp

Rp

Rn

Rn

Rn Rn Rn

AA

A

AA

A

B B

B

B

(a) Inverter (b) 2-input NAND (c) 2-input NOR

tp = 0.69 Ron CL

(assuming that CL dominates!)

= RON

EE415 VLSI Design

Analysis of Propagation DelayVDD

CL

F

Rp Rp

Rn

Rn

A

A B

B

2-input NAND

1. Assume Rn=Rp= resistance of minimum sized NMOS inverter

2. Determine “Worst Case Input” transition(Delay depends on input values)

3. Example: tpLH for 2input NAND- Worst case when only ONE PMOS Pulls

up the output node- For 2 PMOS devices in parallel, the

resistance is lower

4. Example: tpHL for 2input NAND- Worst case : TWO NMOS in series

tpLH = 0.69RpCL

tpHL = 0.69(2Rn)CL

EE415 VLSI Design

What is the Value of Ron?

Computing Ron for tPHL , for an inverter

2/21

DDoutNMOSDDoutNMOSon VVRVVRR

2/21

DDoutDDout VVD

DS

VVD

DSon I

VI

VR

EE415 VLSI Design

Numerical Examples of Resistances for 1.2m CMOS

See Example 4.2, table 3.3

EE415 VLSI Design

Transistor Sizing

VDD

AB

C

D

DA

B C

12

22

6

612

12

F

• for symmetrical response (dc, ac)• for performance

Focus on worst-case

Input Dependent

Numbers indicate transistor sizingwith minimum sizeequal to 1

EE415 VLSI Design

Design for Worst CaseVVDD

CL

F

A

A B

B

2

2

1 1

DD

AB

C

D

DA

B C

12

22

2

24

4

F

Here it is assumed that Rp = Rn

Additional geometry changeswhich compensate for the worstcase path

EE415 VLSI Design

Problems with Complementary CMOS

•Gate with N inputs requires 2N transistors•other circuit styles use N+1 transistors

•tp deteriorates with high fan-in•increases total capacitance•series connected transistors slows down gate

•fan-out loads down gate•1 fan-out = 2 gate capacitors (PMOS and NMOS)

FOaFIaFIat p 32

21

EE415 VLSI Design

Influence of Fan-In and Fan-Out on Delay

VDD

A B

A

B

C

D

C D

tp a1FI a2FI2 a3FO+ +=

Fan-Out: Number of Gates Connected2 Gate Capacitances per Fan-Out

FanIn: Quadratic Term due to:

1. Resistance Increasing2. Capacitance Increasing(tpHL )

EE415 VLSI Design

tp as a Function of Fan-In

1 3 5 7 9fan-in

0.0

1.0

2.0

3.0

4.0

t p (nsec)

tpHL

tp

tpLHlinear

quadratic

AVOID LARGE FAN-IN GATES! (Typically than FI < 4)

Gate: NANDfan-out = 1

EE415 VLSI Design

As long as Fan-out Capacitance dominates• Progressive Sizing:

CL

In1

InN

In3

In 2

Out

C1

C2

C3

M1 > M2 > M3 > MN

M1

M2

M3

MN

Distributed RC-line

Can Reduce Delay by more than 30%!

Example 4.3:no sizing: tpHL = 1.1 nsecwith sizing: tpHL = 0.81 nsec

Fast Complex Gate - Design Techniques

EE415 VLSI Design

Fast Complex Gate - Design Techniques

•Transistor Ordering

In1

In3

In2

C1

C2

CL

M1

M2

M3

In3

In1

In2

C3

C2

CL

M3

M2

M1

(a) (b)

critical pathcritical path

EE415 VLSI Design

Fast Complex Gate - Design Techniques

•Improved Logic Design

EE415 VLSI Design

Fast Complex Gate - Design Techniques

•Buffering:• Isolate Fan-in from Fan-out

CLCL

Read Example 4.5

EE415 VLSI Design

Example: Full Adder

VDD

VDD

VDD

VDD

A B

Ci

S

Co

X

B

A

Ci A

BBA

Ci

A B Ci

Ci

B

A

Ci

A

B

BA

Co = AB + Ci(A+B)

28 transistors

EE415 VLSI Design

A Revised Adder Circuit

VDD

Ci

A

BBA

B

A

A BKill

Generate"1"-Propagate

"0"-Propagate

VDD

Ci

A B Ci

Ci

B

A

Ci

A

BBA

VDD

SCo

24 transistors

EE415 VLSI Design

Ratioed Logic

VDD

VSS

PDNIn1In2In3

F

RLLoad

VDD

VSS

In1In2In3

F

VDD

VSS

PDNIn1In2In3

F

VSS

PDN

Resistive DepletionLoad

PMOSLoad

(a) resistive load (b) depletion load NMOS (c) pseudo-NMOS

VT < 0

Goal: to reduce the number of devices over complementary CMOS

EE415 VLSI Design

Ratioed LogicVDD

VSS

PDNIn1

In2

In3

F

RLLoadResistive

N transistors + Load

• VOH = VDD

• VOL = RDN

RDN + RL

• Asymmetrical response

• Static power consumption

• tpLH= 0.69 RL CL

VDD

LPDNLpHL CRRt ||69.0

EE415 VLSI Design

Active LoadsVDD

VSS

In1In2In3

F

VDD

VSS

PDNIn1In2In3

F

VSS

PDN

DepletionLoad

PMOSLoad

depletion load NMOS pseudo-NMOS

VT < 0

EE415 VLSI Design

Load Lines of Ratioed Gates

0.0 1.0 2.0 3.0 4.0 5.0Vout (V)

0

0.25

0.5

0.75

1

I L(Normalized)

Resistive load

Pseudo-NMOS

Depletion load

Current source

EE415 VLSI Design

Pseudo-NMOS

VDD

A B C D

FCL

VOH = VDD (similar to complementary CMOS)

kn VDD VTn– VOLVOL

2

2-------------–

kp

2------ VDD VTp– 2=

VOL VDD VT– 1 1kpkn------–– (assuming that VT VTn VTp )= = =

SMALLER AREA & LOAD BUT STATIC POWER DISSIPATION!!!

EE415 VLSI Design

Pseudo-NMOS NAND Gate

VDD

GND

Out