Computational Contact and Impact Mechanics

Post on 04-Oct-2014

444 views 3 download

Tags:

Transcript of Computational Contact and Impact Mechanics

SpringerWienNewYork

CISM COURSES AND LECTURES

Series Editors:

The RectorsGiulio Maier - Milan

Jean Salençon - PalaiseauWilhelm Schneider - Wien

The Secretary General

Executive Editor

The series presents lecture notes, monographs, edited works and

and Applied Mathematics.

This volume contains 157 illustrations

This work is subject to copyright.All rights are reserved,

whether the whole or part of the material is concerned

broadcasting, reproduction by photocopying machineor similar means, and storage in data banks.

© 2007 by CISM, UdinePrinted in ItalySPIN 12068043

All contributions have been typeset by the authors.

Emerging Spatial and Temporal Discretization Methods 3

Emerging Spatial and Temporal Discretization Methods 5

Emerging Spatial and Temporal Discretization Methods 7

Emerging Spatial and Temporal Discretization Methods 9

10

Emerging Spatial and Temporal Discretization Methods 11

12

Emerging Spatial and Temporal Discretization Methods 13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

1

2

3

4

5

6

7

8

9

10

x

Con

tact

Tra

ctio

n

Normal traction, analyticalFrictional traction, analyticalNormal traction, numericalFrictional traction, numerical

Emerging Spatial and Temporal Discretization Methods 15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

1

2

3

4

5

6

7

8

9

10

x

Con

tact

Tra

ctio

n

Normal traction, analyticalFrictional traction, analyticalNormal traction, numericalFrictional traction, numerical

16

Emerging Spatial and Temporal Discretization Methods 17

Emerging Spatial and Temporal Discretization Methods 19

0 5 10 15 20 25 30 35 40 450

0.5

1

1.5

2

2.5

3

3.5

4

4.5x 10

9

Displacement

Rea

ctio

n F

orce

20

Emerging Spatial and Temporal Discretization Methods 21

22

-1.01E+03

-8.12E+02

-6.14E+02

-4.16E+02

-2.18E+02

-1.97E+01

1.78E+02

3.76E+02

5.74E+02

7.72E+02

9.70E+02

-1.21E+03

1.17E+03

_________________ S T R E S S 3

Time = 1.00E+00

-9.56E+02

-7.62E+02

-5.67E+02

-3.73E+02

-1.78E+02

1.64E+01

2.11E+02

4.06E+02

6.00E+02

7.95E+02

9.89E+02

-1.15E+03

1.18E+03

_________________ S T R E S S 3

Time = 1.50E+03

5.31E+01

1.06E+02

1.59E+02

2.12E+02

2.65E+02

3.18E+02

3.72E+02

4.25E+02

4.78E+02

5.31E+02

5.84E+02

6.37E+02

0.00E+00

_________________ Mises Stress

Time = 1.00E+00Time = 1.00E+00

5.95E+01

1.19E+02

1.78E+02

2.38E+02

2.97E+02

3.57E+02

4.16E+02

4.76E+02

5.35E+02

5.95E+02

6.54E+02

7.14E+02

0.00E+00

_________________ Mises Stress

Time = 2.02E+02Time = 2.02E+02

Emerging Spatial and Temporal Discretization Methods 23

Emerging Spatial and Temporal Discretization Methods 25

26

Emerging Spatial and Temporal Discretization Methods 27

Emerging Spatial and Temporal Discretization Methods 29

0 5 10 15 20Time (scaled units)

0

2

6

10

12

16

Ene

rgy

(sca

led

units

)

0 5 10 15 20Time (scaled units)

0

2

6

10

12

16

Ene

rgy

(sca

led

units

)

Emerging Spatial and Temporal Discretization Methods 31

Emerging Spatial and Temporal Discretization Methods 33

Time (scaled units)

0.0

50.0

100.0

150.0

200.0

Ene

rgy

(sca

led

units

)

Time (scaled units)

0.0

50.0

100.0

150.0

200.0

Ene

rgy

(sca

led

units

)

Emerging Spatial and Temporal Discretization Methods 35

Time (milliseconds)

0.00

0.05

0.10

0.15

0.20

0.25

Potential Energy, BallTotal Energy, Ball

Emerging Spatial and Temporal Discretization Methods 37

G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 41

G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 43

G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 45

G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 47

G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 49

50 G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 51

52 G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 53

G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 55

56 G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 57

G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 59

60 G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 61

62 G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 63

G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 65

66 G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 67

G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 69

70 G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 71

72 G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 73

G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 75

76 G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 77

G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 79

G. Zavarise and M. Paggi

Reliability of Micromechanical Contact Models 81

G. Zavarise and M. Paggi

M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 85

M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 87

M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 89

M. Brinkmeier, et al.

0 50 100 150 200 250

0

0.01

0.02

Tan

g

hom.meshinhom.meshinhom.mesh (bound. term)

Modern Approaches on Rolling Contact 91

M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 93

M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 95

M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 97

M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 99

100 M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 101

102 M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 103

M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 105

106 M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 107

M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 109

110 M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 111

112 M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 113

M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 115

116 M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 117

M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 119

120 M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 121

0 0.5 1 1.50

0.2

0.4

0.6

0.8

1

0.6

0.7

0.8

0.9

1 = 1000 1/s =2.5 1/s = 0.01 1/s

10 10 10 100

101

102

103

104

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

elasticviscoelastic

122 M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 123

M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 125

126 M. Brinkmeier, et al.

Modern Approaches on Rolling Contact 127

Homogenization and Multi-Scale Approaches 131

Homogenization and Multi-Scale Approaches 133

Homogenization and Multi-Scale Approaches 135

Homogenization and Multi-Scale Approaches 137

Homogenization and Multi-Scale Approaches 139

Homogenization and Multi-Scale Approaches 141

Homogenization and Multi-Scale Approaches 143

0.0001

0.001

0.01

0.1

1

10

0.001 0.01 0.1 1 10 100

cz1cz2

cz5

road track

Homogenization and Multi-Scale Approaches 145

mm

mm

mm

mm

mm

mm

0.5

0 0.2

0.6

Homogenization and Multi-Scale Approaches 147

Frequency [1/s]

Mod

ule

[N/m

m²]

1E+111E+071E+051000100.10.001

0.1

10

1

100

1000

10000

0.01

0.001

1E+15

storage modulus

loss modulus

Homogenization and Multi-Scale Approaches 149

150

Homogenization and Multi-Scale Approaches 151

152

Homogenization and Multi-Scale Approaches 153

Homogenization and Multi-Scale Approaches 155

156

Homogenization and Multi-Scale Approaches 157

0

0.05

0.1

0.15

0.25

10 100 1000 10000

0.2

2

0

0.1

0.2

0.5

0.6

10 100 1000 10000horizontal sliding velocity

0.51

51

0

0.1

0.2

0.5

0.6

10 100 1000 10000horizontal sliding velocity

0.20.5

2

Homogenization and Multi-Scale Approaches 159

0

0.1

0.2

0.5

0.6

0.7

10 100 1000 10000horizontal sliding velocity

0.20.5

1

0

0.05

0.1

0.15

0.2

10 100 1000 10000 500

0

0.1

0.2

0.5

0.6

0.7

1 10 100 1000 10000

wl=0.1 mm

wl=0.025 mm

160

0

0.2

0.6

1

1 10 100 1000 10000 100000

simulationexperiment

Homogenization and Multi-Scale Approaches 161

P. Alart

Contact on Multiprocessor Environmen… 165

166 P. Alart

Contact on Multiprocessor Environmen… 167

P. Alart

Contact on Multiprocessor Environmen… 169

170 P. Alart

Contact on Multiprocessor Environmen… 171

172 P. Alart

Contact on Multiprocessor Environmen… 173

P. Alart

Contact on Multiprocessor Environmen… 175

176 P. Alart

Nstep

itera

tions point de bifurcation

Contact on Multiprocessor Environmen… 177

P. Alart

Contact on Multiprocessor Environmen… 179

P. Alart

Contact on Multiprocessor Environmen… 181

P. Alart

Contact on Multiprocessor Environmen… 183

r

r

r r

r r

rd

bb

aa

k+1

k+1

k+1

rc rc

k+1/2

k+1/2

k+1/2

k+1/2 t

n

drk+1

=

status =k / slip

r

r

c

t

n

rk

rk+1/2a

rk+1/2b rb

k+1

k+1ra

bk+1

ak+1

status = slip +k

wak

uak

wck uc

k

rn

rt

wkb

kub

uak

kr

rk

ubk

uak

wak

wbk

ka0=w

r

status = stick status = gap status = slip+

k

k

k

k

=

=

k k k

P. Alart

Contact on Multiprocessor Environmen… 185

P. Alart

Contact on Multiprocessor Environmen… 187

P. Alart

Contact on Multiprocessor Environmen… 189

P. Alart

Contact on Multiprocessor Environmen… 191

P. Alart

Contact on Multiprocessor Environmen… 193

P. Alart

Contact on Multiprocessor Environmen… 195

P. Alart

Contact on Multiprocessor Environmen… 197

P. Alart

0

100

200

500

G.M

.Res

. ite

ratio

ns = 0) = 0.2)

= 0.2) = 0.2)

= 0.2)

0

50

100

150

200

G.M

.Res

. ave

. ite

.

0

20

60

100

120

G.M

.Res

. ave

. ite

.

= 0) = 0.2)

= 0.2) = 0.2)

= 0.2)

shear compression

Contact on Multiprocessor Environmen… 199

200 P. Alart

Contact on Multiprocessor Environmen… 201

202 P. Alart

Contact on Multiprocessor Environmen… 203

P. Alart

Contact on Multiprocessor Environmen… 205

206 P. Alart

Contact on Multiprocessor Environmen… 207

P. Alart

Contact on Multiprocessor Environmen… 209

210 P. Alart

Contact on Multiprocessor Environmen… 211

212 P. Alart

Contact on Multiprocessor Environmen… 213

P. Alart

Contact on Multiprocessor Environmen… 215

216 P. Alart

Contact on Multiprocessor Environmen… 217

220

Numerical Soil Mechanics Experiments… 221

222

Numerical Soil Mechanics Experiments… 223

Numerical Soil Mechanics Experiments… 225

226

Numerical Soil Mechanics Experiments… 227

Numerical Soil Mechanics Experiments… 229

Numerical Soil Mechanics Experiments… 231

Numerical Soil Mechanics Experiments… 233

Numerical Soil Mechanics Experiments… 235

Numerical Soil Mechanics Experiments… 237

Numerical Soil Mechanics Experiments… 239

Numerical Soil Mechanics Experiments… 241

Numerical Soil Mechanics Experiments… 243

Numerical Soil Mechanics Experiments… 245

Numerical Soil Mechanics Experiments… 247