Classic Experiments in Quantum Optics

Post on 30-Dec-2015

59 views 3 download

description

Classic Experiments in Quantum Optics. Experimental Quantum Optics and Quantum Information Part II, Photonic Quantum Optics Morgan W. Mitchell Spring 2005 ICFO – Institut de Ciencies Fotoniques. Taylor’s experiment (1909). film. slit. needle. diffraction pattern f(y). - PowerPoint PPT Presentation

Transcript of Classic Experiments in Quantum Optics

Classic Experiments in Quantum Optics

Experimental Quantum Optics and Quantum Information

Part II, Photonic Quantum Optics

Morgan W. Mitchell

Spring 2005

ICFO – Institut de Ciencies Fotoniques

Taylor’s experiment (1909)

slit

needle

diffraction pattern f(y)

film

Proceedings of the Cambridgephilosophical society. 15 114-115(1909)

Taylor’s experiment (1909)

slit

needle

diffraction pattern f(y)

Interpretation:

Classical: f(y) <E2(y)>

Early Quantum (J. J. Thompson): if photons are localized concentrations of E-M field, at low photon density there should be too few to interfere.

Modern Quantum:f(y) = <n(y)> = <a+(y)a(y)> <E-(y)E+(y)>E+(r) = a exp[i k.r – it]E-(r) = a+ exp[-i k.r + it]

f(y) same as in classical.

Dirac: “each photon interferes only with itself.”

film

Hanbury-Brown and Twiss (1956)

Nature, v.117 p.27Correlation g(2)

Tube position

Detectors see same field

Detectors see different fields

I

t

I

t

Signal is:g(2) = <I1(t)I2(t)> / <I1(t)><I2(t)>

Hanbury-Brown and Twiss (1956)

Correlation g(2)

Tube position

I

t

I

t

Signal is:g(2) = I1I2 / <I1><I2>= < (<I1>+I1) (<I2>+ I2) > / <I1><I2>

Note: <I1> + I1≥<I2> + I2 ≥ <I1> = <I2> = 0

g(2) = (<I1><I2>+<I1><I2>+<I2><I1>+<I1I2>)/<I1><I2> = 1 + <I1I2>)/<I1><I2> = 1 for uncorrelated <I1I2> = 0 > 1 for positive correlation I1I2 > 0 e.g. I1I2

< 1 for anti-correlation I1I2 < 0

Classical optics: viewing the same point, the intensities must be positively correlated.

I1= I0/2

I2= I0/2

I0

Detectors see same field

Detectors see different fields

Kimble, Dagenais + Mandel 1977

PRL, v.39 p691

I1= I0/2

I2= I0/2

I0

n1=0 or 1

n2= 1 - n1

n0=1

Classical: correlated

Quantum: can beanti-correlated

Correlation g(2)

t1 - t2Correlation g(2)

t1 - t2

Kimble, Dagenais + Mandel 1977

PRL, v.39 p691

Kimble, Dagenais + Mandel 1977

PRL, v.39 p691

Interpretation:

g(2)() < a+(t)a+(t+)a(t+)a(t)> < E-(t) E-(t+) E+(t+)E+(t)>HI(t) -Ed E+(t) |e><g| + E-(t) |g><e| HI(t) HI(t+) E-(t) E-(t+) |g><e| |g><e| + h.c.

Pe

t time

Kuhn, Hennrich and Rempe 2002

Kuhn, Hennrich and Rempe 2002

Pelton, et al. 2002

Pelton, et al. 2002

fs pulserelax

emit

InAs QD

Pelton, et al. 2002

Goal: make the pure state|> = a+|0> = |1>Accomplished: make the mixed state 0.38 |1><1| + 0.62 |0><0|

Holt + Pipkin / Clauser + Freedman / Aspect, Grangier + Roger 1973-1982

J=0

J=0

J=1

Total angular momentum is zero.

For counter-propagating photonsimplies a singlet polarization state:|> =(|L>|R> - |R>|L>)/2

Holt + Pipkin / Clauser + Freedman / Aspect, Grangier + Roger 1973-1982

Total angular momentum is zero.

For counter-propagating photons,implies a singlet polarization state:|> =(|L>|R> - |R>|L>)/2

|> = 1/2(aL+aR

+ - aR+aL

+)|0> = 1/2(aH

+aV+ - aV

+aH+)|0>

= 1/2(aD+aA

+ - aA+aD

+)|0>

Detect photon 1 in any polarization basis (pA,pB), detect pA, photon 2 collapses to pB, or vice versa.

If you have classical correlations,you arrive at the Bell inequality-2 ≤ S ≤ 2.

Holt + Pipkin / Clauser + Freedman / Aspect, Grangier + Roger 1973-1982

a

a'b

b'

|SQM| ≤ 22 = 2.828...

22.5°

Perkin-Elmer Avalanche Photodiode

thin p region (electrode)

absorption region intrinsic silicon

multiplication regionV positive

V negative

“Geiger mode”: operating pointslightly above breakdown voltage

e- h+

Avalanche Photodiode Mechanism

Many valence electrons, each with a slightly differentabsorption frequency i.Broadband detection.

k

E

valence band(filled)

conduction band (empty)

possible transitions

= E/hbar Di

“Classic” Photomultiplier Tube

Many valence electrons, each can be driven into the continuum i.Broadband detection.

E

Photocathode Response

Broad wavelength range: 120 nm – 900 nmLower efficiency: QE < 30%

Microchannel Plate Photomultiplier Tube

For light, use same photocathode materials, same Q. Eff. and same wavelength ranges. Much faster response: down to 25 ps jitter (TTS = Transit time spread)

Coincidence Detection with Parametric Downconversion

FRIBERG S, HONG CK, MANDEL LMEASUREMENT OF TIME DELAYS IN THE PARAMETRIC PRODUCTION OF PHOTON PAIRS Phys. Rev. Lett. 54 (18): 2011-2013 1985

Using MCP PMTs for best time-resolution.CF Disc. = Constant-fraction discriminator: identifies “true” detection pulses, rejects background, maintains timing.TDC = “Time to digital converter”:Measures delay from A detection to B detection.PDP11: Very old (1979) computer from DEC.

Physical Picture of Parametric Downconversion

valence

conduction

Material (KDP) is transparent to both pump (UV) and downconvertedphotons (NIR). Process is “parametric” = no change in state of KDP.This requires energy and momentum conservation: s + i = p ks + ki = kp Even so, can be large uncertainty in s i

Intermediate states (virtual states) don’t even approximately conserve energy.Thus must be very short-lived. Result: signal and idler produced at same time.

k-vector conservationks + ki = kp

collinear

non-collinearor

phase matching

Coincidence Detection with Parametric Downconversion

FRIBERG S, HONG CK, MANDEL LMEASUREMENT OF TIME DELAYS IN THE PARAMETRIC PRODUCTION OF PHOTON PAIRS Phys. Rev. Lett. 54 (18): 2011-2013 1985

transit time through KDP~400 ps

Dt < 100 ps

TDC = time-to-digitalconverter. Measuresdelay from A detectionto B detection.

Quadrature Detection of Squeezed Light (Slusher, et. al. 1985)

SLUSHER RE, HOLLBERG LW, YURKE B, et al.

OBSERVATION OF SQUEEZED STATES GENERATED BY 4-WAVE MIXING IN AN OPTICAL CAVITY

Phys. Rev. Lett. 55 (22): 2409-2412 1985

Quadrature Detection (Wu, Xiao, Kimble 1985)

WU L-A., Xiao M., KIMBLE H.J.SQUEEZED STATES OF LIGHT FROM AN OPTICAL PARAMETRIC OSCILLATOR JOSA B 4 (10): 1465-1475 OCT 1987

Quadrature Detection Electronics

P

freq

Spectrumanalyzer

environmental noise

measurementfrequency P

time

Slusher, et. al. 1985 Wu, et. al. 1987

Quadrature Detection of Squeezed Vacuum

LO phase

input isvacuum

input issqueezedvacuum

P

D1

D2

LO

in

Di(t)

X2

X1

X2

X1

vacuum squeezedvacuum

63% VRMS

(40% power)

Cauchy Schwarz Inequality Violation

Cauchy Schwarz Inequality Violation

9P

7S

7P

435.8 nm

567.6 nm

202Hg

e- impact

Cauchy Schwarz Inequality Violation

Two-photon diffraction

D’Angelo, Chekhova and Shih, Phys. Rev. Lett. 87 013602 (2001)

Two IR photons (pairs)

One IR photon

Pump

2,0high,low

0,2high,low

Two-photon diffraction

D’Angelo, Chekhova and Shih, Phys. Rev. Lett. 87 013602 (2001)

Two IR photons (pairs)

One IR photon

Two paths to coincidence detection:

Pump

2,0high,low

0,2high,low

'2 rrkie

Not just for photons!

Not just for photons!

g(1) g(2)

Hong-Ou-Mandel effect

Hong, Ou and Mandel, Phys. Rev. Lett. 59 2044 (1987)

2,0high,low

0,2high,low

Hong-Ou-Mandel effect

Hong, Ou and Mandel, Phys. Rev. Lett. 59 2044 (1987)

2,0high,low

0,2high,low

Hong-Ou-Mandel effect with polarization

Sergienko, Shih, and Rubin, JOSA B, 12, 859 (1995)

Single-pass squeezing

Wenger,Tualle-Brouri, and Grangier, Opt. Lett. 29, 1267 (2004)

Single-pass squeezing

Wenger,Tualle-Brouri, and Grangier, Opt. Lett. 29, 1267 (2004)